Localization of Tissue Thromboplastin in the Human Brain

1977 ◽  
Vol 37 (01) ◽  
pp. 091-097 ◽  
Author(s):  
E Bjørklid ◽  
J Storm-Mathisen ◽  
E Storm ◽  
H Prydz

SummaryMonospecific antisera against the purified protein component of tissue thromboplastin (apoprotein-III) from human brain have been raised in goats and rabbits. The antisera neutralized tissue thromboplastin prepared from brain, thyroid gland and pulmonary tissue, indicating that apoproteins in the various preparations cross-reacted immunologically and therefore were similar or identical.Comparison of the activities of tissue thromboplastin preparations from 34 different areas of the brain demonstrated a characteristic distribution pattern and a wide range of activities. White and grey matter from the same areas had similar activities. Bulbus and tractus olfac-torius, medulla oblongata, corpus pineale, hippocampus and hypothalamus contained 160–270 % of the average activity, whereas cerebellum, globus pallidus, nucleus ruber and substantia nigra contained 30–60 %. The distinct distribution pattern was unrelated to tissue vascularization, and may suggest that apoprotein-III could serve other functions, apart from the coagulation of blood. The predominance in phylogenetically older brain regions would suggest that it represents a primitive or fundamental feature.

2020 ◽  
Author(s):  
Kosuke Motoki ◽  
Shinsuke Suzuki

Subjective value for food rewards guide our dietary choices. There is growing evidence that value signals are constructed in the brain by integrating multiple types of information about flavour, taste, and nutritional attributes of the foods. However, much less is known about the influence of food-extrinsic factors such as labels, brands, prices, and packaging designs. In this mini review, we outline recent findings in decision neuroscience, consumer psychology, and food science with regard to the effect of extrinsic factors on food value computations in the human brain. To date, studies have demonstrated that, while the integrated value signal is encoded in the ventromedial prefrontal cortex, information on the extrinsic factors of the food is encoded in diverse brain regions previously implicated in a wide range of functions: cognitive control, memory, emotion and reward processing. We suggest that a comprehensive understanding of food valuation requires elucidation of the mechanisms behind integrating extrinsic factors in the brain to compute an overall subjective value signal.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Xueyan Fu ◽  
Will Patterson ◽  
Gregory Dolnikowski ◽  
Bess Dawson-Hughes ◽  
Martha Morris ◽  
...  

Abstract Objectives Very little is known about the forms of vitamin D and vitamin K in the human brain. The objective of this study is to evaluate concentrations of vitamin D and vitamin K forms in human brain and their correlations across four human brain regions. Methods Vitamin D [D3, 25(OH)D and 1,25(OH)2D] and vitamin K [phylloquinone and menaquinone-4 (MK4)] concentrations were measured by LC/MS/MS and HPLC, respectively, in four brain regions from post-mortem samples obtained from participants in the Rush Memory and Aging Project (n = 130, mean age 82 yrs, 81% female). The brain regions analyzed were the mid-frontal cortex (MF) and mid-temporal cortex (MT) [two regions important for memory in Alzheimer's Disease (AD)], the cerebellum (CR, a region not affected by AD), and the anterior watershed white matter (AWS, a region associated with vascular disease). The correlations among the vitamin forms across brain regions were calculated using Spearman rank order correlation coefficients. Significance was set at P < 0.001. Results The average concentrations of vitamin D3, 25(OH)D and MK4 were 604 pg/g, 535 pg/g, and 3.4 pmol/g, respectively. 25(OH)D and MK4 were detected in >95% of the brain samples. Nearly 92% of 1,25(OH)2D and 80% of phylloquinone samples had concentrations below the limit of assay detection (LOD) 1,25(OH)2D = 20 ng/g, phylloquinone = 0.1 pmol/g). Vitamin D3 and 25(OH)D concentrations were positively correlated across all four regions (all Spearman r ≥ 0.78, P < 0.0001). The 1,25(OH)2D was significantly correlated between the MF and CR regions only (Spearman r = 0.30, P < 0.001, all other P ≥ 0.002). MK4 and PK were positively correlated across the four regions studied (MK4 all Spearman r ≥ 0.78, phylloquinone r ≥ 0.49, all P < 0.001). Conclusions To the best of our knowledge, this study is the first evaluation of the concentrations of vitamin D and vitamin K forms in multiple regions of the human brain. Overall, the vitamin D and vitamin K forms were each positively correlated across the four brain regions studied. Future studies are needed to clarify the roles of these nutrients in AD and dementia. Funding Sources National Institute of Aging.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1029-D1037
Author(s):  
Liting Song ◽  
Shaojun Pan ◽  
Zichao Zhang ◽  
Longhao Jia ◽  
Wei-Hua Chen ◽  
...  

Abstract The human brain is the most complex organ consisting of billions of neuronal and non-neuronal cells that are organized into distinct anatomical and functional regions. Elucidating the cellular and transcriptome architecture underlying the brain is crucial for understanding brain functions and brain disorders. Thanks to the single-cell RNA sequencing technologies, it is becoming possible to dissect the cellular compositions of the brain. Although great effort has been made to explore the transcriptome architecture of the human brain, a comprehensive database with dynamic cellular compositions and molecular characteristics of the human brain during the lifespan is still not available. Here, we present STAB (a Spatio-Temporal cell Atlas of the human Brain), a database consists of single-cell transcriptomes across multiple brain regions and developmental periods. Right now, STAB contains single-cell gene expression profiling of 42 cell subtypes across 20 brain regions and 11 developmental periods. With STAB, the landscape of cell types and their regional heterogeneity and temporal dynamics across the human brain can be clearly seen, which can help to understand both the development of the normal human brain and the etiology of neuropsychiatric disorders. STAB is available at http://stab.comp-sysbio.org.


2020 ◽  
Vol 10 (1) ◽  
pp. 31 ◽  
Author(s):  
Smart Ikechukwu Mbagwu ◽  
Luis Filgueira

Cerebral microvascular endothelial cells (CMVECs) line the vascular system of the brain and are the chief cells in the formation and function of the blood brain barrier (BBB). These cells are heterogeneous along the cerebral vasculature and any dysfunctional state in these cells can result in a local loss of function of the BBB in any region of the brain. There is currently no report on the distribution and variation of the CMVECs in different brain regions in humans. This study investigated microcirculation in the adult human brain by the characterization of the expression pattern of brain endothelial cell markers in different brain regions. Five different brain regions consisting of the visual cortex, the hippocampus, the precentral gyrus, the postcentral gyrus, and the rhinal cortex obtained from three normal adult human brain specimens were studied and analyzed for the expression of the endothelial cell markers: cluster of differentiation 31 (CD31) and von-Willebrand-Factor (vWF) through immunohistochemistry. We observed differences in the expression pattern of CD31 and vWF between the gray matter and the white matter in the brain regions. Furthermore, there were also regional variations in the pattern of expression of the endothelial cell biomarkers. Thus, this suggests differences in the nature of vascularization in various regions of the human brain. These observations also suggest the existence of variation in structure and function of different brain regions, which could reflect in the pathophysiological outcomes in a diseased state.


2018 ◽  
Author(s):  
Amitabha Bose ◽  
Áine Byrne ◽  
John Rinzel

AbstractWhen listening to music, humans can easily identify and move to the beat. Numerous experimental studies have identified brain regions that may be involved with beat perception and representation. Several theoretical and algorithmic approaches have been proposed to account for this ability. Related to, but different from the issue of how we perceive a beat, is the question of how we learn to generate and hold a beat. In this paper, we introduce a neuronal framework for a beat generator that is capable of learning isochronous rhythms over a range of frequencies that are relevant to music and speech. Our approach combines ideas from error-correction and entrainment models to investigate the dynamics of how a biophysically-based neuronal network model synchronizes its period and phase to match that of an external stimulus. The model makes novel use of on-going faster gamma rhythms to form a set of discrete clocks that provide estimates, but not exact information, of how well the beat generator spike times match those of a stimulus sequence. The beat generator is endowed with plasticity allowing it to quickly learn and thereby adjust its spike times to achieve synchronization. Our model makes generalizable predictions about the existence of asymmetries in the synchronization process, as well as specific predictions about resynchronization times after changes in stimulus tempo or phase. Analysis of the model demonstrates that accurate rhythmic time keeping can be achieved over a range of frequencies relevant to music, in a manner that is robust to changes in parameters and to the presence of noise.Author summaryMusic is integral to human experience and is appreciated across a wide range of cultures. Although many features distinguish different musical traditions, rhythm is central to nearly all. Most humans can detect and move along to the beat through finger or foot tapping, hand clapping or other bodily movements. But many people have a hard time “keeping a beat”, or say they have “no sense of rhythm”. There appears to be a disconnect between our ability to perceive a beat versus our ability to produce a beat, as a drummer would do as part of a musical group. Producing a beat requires beat generation, the process by which we learn how to keep track of the specific time intervals between beats, as well as executing the motor movement needed to produce the sound associated with a beat. In this paper, we begin to explore neural mechanisms that may be responsible for our ability to generate and keep a beat. We develop a computational model that includes different neurons and shows how they cooperate to learn a beat and keep it, even after the stimulus is removed, across a range of frequencies relevant to music. Our dynamical systems model leads to predictions for how the brain may react when learning a beat. Our findings and techniques should be widely applicable to those interested in understanding how the brain processes time, particularly in the context of music.


2021 ◽  
Vol 11 (12) ◽  
pp. 1565
Author(s):  
Sayan Kahali ◽  
Marcus E Raichle ◽  
Dmitriy A Yablonskiy

While significant progress has been achieved in studying resting-state functional networks in a healthy human brain and in a wide range of clinical conditions, many questions related to their relationship to the brain’s cellular constituents remain. Here, we use quantitative Gradient-Recalled Echo (qGRE) MRI for mapping the human brain cellular composition and BOLD (blood–oxygen level-dependent) MRI to explore how the brain cellular constituents relate to resting-state functional networks. Results show that the BOLD signal-defined synchrony of connections between cellular circuits in network-defined individual functional units is mainly associated with the regional neuronal density, while the between-functional units’ connectivity strength is also influenced by the glia and synaptic components of brain tissue cellular constituents. These mechanisms lead to a rather broad distribution of resting-state functional network properties. Visual networks with the highest neuronal density (but lowest density of glial cells and synapses) exhibit the strongest coherence of the BOLD signal as well as the strongest intra-network connectivity. The Default Mode Network (DMN) is positioned near the opposite part of the spectrum with relatively low coherence of the BOLD signal but with a remarkably balanced cellular contents, enabling DMN to have a prominent role in the overall organization of the brain and hierarchy of functional networks.


Author(s):  
Spase Petkoski ◽  
Viktor K. Jirsa

The timing of activity across brain regions can be described by its phases for oscillatory processes, and is of crucial importance for brain functioning. The structure of the brain constrains its dynamics through the delays due to propagation and the strengths of the white matter tracts. We use self-sustained delay-coupled, non-isochronous, nonlinearly damped and chaotic oscillators to study how spatio-temporal organization of the brain governs phase lags between the coherent activity of its regions. In silico results for the brain network model demonstrate a robust switching from in- to anti-phase synchronization by increasing the frequency, with a consistent lagging of the stronger connected regions. Relative phases are well predicted by an earlier analysis of Kuramoto oscillators, confirming the spatial heterogeneity of time delays as a crucial mechanism in shaping the functional brain architecture. Increased frequency and coupling are also shown to distort the oscillators by decreasing their amplitude, and stronger regions have lower, but more synchronized activity. These results indicate specific features in the phase relationships within the brain that need to hold for a wide range of local oscillatory dynamics, given that the time delays of the connectome are proportional to the lengths of the structural pathways. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ni Shu ◽  
Yaou Liu ◽  
Yunyun Duan ◽  
Kuncheng Li

The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.


Author(s):  
Mohammad Ali Taheri ◽  
Sara Torabi ◽  
Noushin Nabavi ◽  
Fatemeh Modarresi-Asem ◽  
Majid Abbasi Sisara ◽  
...  

Task fMRI has played a critical role in recognizing the specific functions of the different regions of human brain during various cognitive activities. This study aimed to investigate group analysis and functional connectivity in the Faradarmangars brain during the Faradarmani CF (FCF) connection. Using task functional MRI (task-fMRI), we attempted the identification of different activated and deactivated brain regions during the Consciousness Filed connection. Clusters that showed significant differences in peak intensity between task and rest group were selected as seeds for seed-voxel analysis. Connectivity of group differences in functional connectivity analysis was determined following each activation and deactivation network. In this study, we report the fMRI-based representation of the FCF connection at the human brain level. The group analysis of FCF connection task revealed activation of frontal lobe (BA6/BA10/BA11). Moreover, seed based functional connectivity analysis showed decreased connectivity within activated clusters and posterior Cingulate Gyrus (BA31). Moreover, we observed an increased connectivity within deactivated clusters and frontal lobe (BA11/BA47) during the FCF connection. Activation clusters as well as the increased and decreased connectivity between different regions of the brain during the FCF connection, firstly, validates the significant effect of the FCF and secondly, indicates a distinctive pattern of connection with this non-material and non-energetic field, in the brain.


2018 ◽  
Vol 50 ◽  
pp. 70-76 ◽  
Author(s):  
Ingvild E. Bjerke ◽  
Martin Øvsthus ◽  
Eszter A. Papp ◽  
Sharon C. Yates ◽  
Ludovico Silvestri ◽  
...  

AbstractThe Human Brain Project (HBP), an EU Flagship Initiative, is currently building an infrastructure that will allow integration of large amounts of heterogeneous neuroscience data. The ultimate goal of the project is to develop a unified multi-level understanding of the brain and its diseases, and beyond this to emulate the computational capabilities of the brain. Reference atlases of the brain are one of the key components in this infrastructure. Based on a new generation of three-dimensional (3D) reference atlases, new solutions for analyzing and integrating brain data are being developed. HBP will build services for spatial query and analysis of brain data comparable to current online services for geospatial data. The services will provide interactive access to a wide range of data types that have information about anatomical location tied to them. The 3D volumetric nature of the brain, however, introduces a new level of complexity that requires a range of tools for making use of and interacting with the atlases. With such new tools, neuroscience research groups will be able to connect their data to atlas space, share their data through online data systems, and search and find other relevant data through the same systems. This new approach partly replaces earlier attempts to organize research data based only on a set of semantic terminologies describing the brain and its subdivisions.


Sign in / Sign up

Export Citation Format

Share Document