Heparinoids and cellular interactions in the vascular system

1996 ◽  
Vol 16 (01) ◽  
pp. 28-34
Author(s):  
K. T. Preissner

SummaryHeparin and related polysaccharides have long been used for therapautic intervention in different disease states related to thromboembolic complications. The localization and functional availability of heparin-like components in the body is mostly confined to cell surfaces and extracellular matrix/basement membranes. Their strategic position particularly in the vascular system enables heparinoids linked to various core proteins (designated as heparan sulfate proteoglycans) to interact with a variety of heparin-binding proteins such as apolipoproteins, lipases, proteases and protease inhibitors, matrix proteins as well as surface receptors on other cells and microorganisms. The variety in gene expression of respective core proteins and differences in glycosaminoglycan side chains are relevant factors for the selectivity of these interactions. Heparinoid-associated core proteins serve as co-receptors for a number of metabolic properties of vascular cells as well as for the regulation of cellular processes, particular as they relate to cell growth and differentiation in angiogenesis. Moreover, heparan sulfate proteoglycans contribute to the process of lipoprotein retention in the vessel wall and the onset of atherosclerosis. Elucidation of molecular properties, functions and their role in vascular diseases can lead to valuable information for the design of heparinoid analogues to be used for pharmacological intervention.

Author(s):  
U. Frevert ◽  
S. Sinnis ◽  
C. Cerami ◽  
V. Nussenzweig

Malaria sporozoites, which invade hepatocytes within minutes after transmission by an infected mosquito, are covered with the circumsporozoite (CS) protein, which in all Plasmodium species contains the conserved region II-plus. This region is also found as a cell-adhesive motif in a variety of host proteins like thrombospondin, properdin and the terminal complement components.The CS protein with its region II-plus specifically binds to heparan sulfate proteoglycans (HSPG) on the basolateral surface of hepatocytes in the space of Disse (FIG. 1), to certain basolateral cell membranes and basement membranes of the kidney (FIG. 2) as well as to heparin in the granules of connective tissue mast cells. The distribution of the HSPG receptors for the CS protein was examined by incubation of Lowicryl K4M or LR White sections of liver and kidney tissue with the recombinant CS ligand, whose binding sites were detected with a monoclonal anti-CS antibody and protein A gold.


2000 ◽  
Vol 7 (2-4) ◽  
pp. 89-101 ◽  
Author(s):  
Elke Schönherr ◽  
Heinz-JüRgen Hausser

The extracellular matrix (ECM) as well as soluble mediators like cytokines can influence the behavior of cells in very distinct as well as cooperative ways. One group of ECM molecules which shows an especially broad cooperativety with cytokines and growth factors are the proteoglycans. Proteoglycans can interact with their core proteins as well as their glycosaminoglycan chains with cytokines. These interactions can modify the binding of cytokines to their cell surface receptors or they can lead to the storage of the soluble factors in the matrix. Proteoglycans themselves may even have cytokine activity. In this review we describe different proteoglycans and their interactions and relationships with cytokines and we discuss in more detail the extracellular regulation of the activity of transforming growth factor-β (TGF-β) by proteoglycans and other ECM molecules. In the third part the interaction of heparan sulfate chains with fibroblast growth factor-2 (FGF-2, basic FGF) as a prototype example for the interaction of heparin-binding cytokines with heparan sulfate proteoglycans is presented to illustrate the different levels of mutual dependence of the cytokine network and the ECM.


2002 ◽  
Vol 70 (3) ◽  
pp. 1530-1537 ◽  
Author(s):  
James M. Fleckenstein ◽  
James T. Holland ◽  
David L. Hasty

ABSTRACT We have previously shown that enterotoxigenic invasion protein A (Tia), a 25-kDa outer membrane protein encoded on an apparent pathogenicity island of enterotoxigenic Escherichia coli (ETEC) strain H10407, mediates attachment to and invasion into cultured human gastrointestinal epithelial cells. The epithelial cell receptor(s) for Tia has not been identified. Here we show that Tia interacts with cell surface heparan sulfate proteoglycans. Recombinant E. coli expressing Tia mediated invasion into wild-type epithelial cell lines but not invasion into proteoglycan-deficient cells. Furthermore, wild-type eukaryotic cells, but not proteoglycan-deficient eukaryotic cells, attached to immobilized polyhistidine-tagged recombinant Tia (rTia). Binding of epithelial cells to immobilized rTia was inhibited by exogenous heparan sulfate glycosaminoglycans but not by hyaluronic acid, dermatan sulfate, or chondroitin sulfate. Similarly, pretreatment of eukaryotic cells with heparinase I, but not pretreatment of eukaryotic cells with chrondroitinase ABC, inhibited attachment to rTia. In addition, we also observed heparin binding to both immobilized rTia and recombinant E. coli expressing Tia. Heparin binding was inhibited by a synthetic peptide representing a surface loop of Tia, as well as by antibodies directed against this peptide. Additional studies indicated that Tia, as a prokaryotic heparin binding protein, may also interact via sulfated proteoglycan molecular bridges with a number of mammalian heparan sulfate binding proteins. These findings suggest that the binding of Tia to host epithelial cells is mediated at least in part through heparan sulfate proteoglycans and that ETEC belongs on the growing list of pathogens that utilize these ubiquitous cell surface molecules as receptors.


1993 ◽  
Vol 123 (3) ◽  
pp. 759-766 ◽  
Author(s):  
D C Love ◽  
J D Esko ◽  
D M Mosser

The intracellular amastigote form of leishmania is responsible for the cell-to-cell spread of leishmania infection in the mammalian host. In this report, we identify a high-affinity, heparin-binding activity on the surface of the amastigote form of leishmania. Amastigotes of Leishmania amazonensis bound approximately 120,000 molecules of heparin per cell, with a Kd of 8.8 x 10(-8) M. This heparin-binding activity mediates the adhesion of amastigotes to mammalian cells via heparan sulfate proteoglycans, which are expressed on the surface of mammalian cells. Amastigotes bound efficiently to a variety of adherent cells which express cell-surface proteoglycans. Unlike wild-type CHO cells, which bound amastigotes avidly, CHO cells with genetic deficiencies in heparan sulfate proteoglycan biosynthesis or cells treated with heparitinase failed to bind amastigotes even at high parasite-input dosages. Cells which express normal levels of undersulfated heparan bound amastigotes nearly as efficiently as did wild-type cells. The adhesion of amastigotes to wild-type nonmyeloid cells was almost completely inhibited by the addition of micromolar amounts of soluble heparin or heparan sulfate but not by the addition of other sulfated polysaccharides.l Binding of amastigotes to macrophages, however, was inhibited by only 60% after pretreatment of amastigotes with heparin, suggesting that macrophages have an additional mechanism for recognizing amastigotes. These results suggest that leishmania amastigotes express a high-affinity, heparin-binding activity on their surface which can interact with heparan sulfate proteoglycans on mammalian cells. This interaction may represent an important first step in the invasion of host cells by amastigotes.


2001 ◽  
Vol 114 (9) ◽  
pp. 1613-1623 ◽  
Author(s):  
T.P. Richardson ◽  
V. Trinkaus-Randall ◽  
M.A. Nugent

Heparan sulfate proteoglycans (HSPG) regulate multiple cellular processes and mediate the cellular uptake of numerous molecules. While heparan sulphate glycosaminoglycan chains are known to modulate receptor binding of several heparin-binding proteins, here we show that distinct extracellular matrices direct HSPG to the nucleus. We analyzed HSPG localization in primary corneal fibroblasts, cultured on fibronectin or collagen type I matrices, using confocal laser scanning microscopy and cell fractionation. Image analysis revealed that the nuclear localization of HSPG core proteins was greater when cells were cultured on fibronectin versus collagen. Matrices containing the heparin-binding domain of fibronectin, but not the integrin-activating domain, demonstrated increased nuclear staining of core proteins. Furthermore, activation of protein kinase C with phorbol 12-myristate 13-acetate inhibited nuclear targeting of HSPG in cells on fibronectin, whereas inhibition of protein kinase C with Ro-31-8220 greatly enhanced nuclear localization of HSPG in cells on both collagen and fibronectin. We propose a matrix-dependent mechanism for nuclear localization of cell surface HSPG involving protein kinase C-mediated signaling. Nuclear localization of HSPG might play important roles in regulating nuclear function.


1988 ◽  
Vol 106 (6) ◽  
pp. 2203-2210 ◽  
Author(s):  
M Kato ◽  
Y Koike ◽  
S Suzuki ◽  
K Kimata

The Engelbreth-Holm-Swarm mouse tumor has been found to produce at least two molecular species of heparan sulfate proteoglycan, a low density one (LD) and a high density one, which differ not only in core proteins but also in glycosaminoglycan structures (Kato, M., Y. Koike, Y. Ito, S. Suzuki, and K. Kimata. 1987. J. Biol. Chem. 262:7180-7188). With aim at investigating their distribution and possible functions in tissues, monoclonal antibodies were produced. Hybridomas obtained by fusion of NS-1 mouse myeloma cells with spleen cells from the rat immunized with a mixture of these proteoglycans were selected by their ability to react with the antigen. Two of them secreted monoclonal antibodies (IgG2a), designated HK-84 and HK-102, that recognize specifically the core protein moiety of LD. Immunofluorescent staining of various tissues (skeletal muscle, cardiac muscle, lung, brain, and kidney) with these monoclonal antibodies has demonstrated that the antigen molecules were present in all basement membranes of these tissues. SDS-PAGE of heparitinase-treated proteoglycan fractions prepared from these tissues and subsequent immunoblotting using these monoclonal antibodies have confirmed that the antigen molecule was LD, and further suggested that there was a tissue-specific variation in the core molecular size. Based on these results, we propose that LD may be an essential component in all basement membranes.


1993 ◽  
Vol 105 (4) ◽  
pp. 1085-1093 ◽  
Author(s):  
J. Reiland ◽  
A.C. Rapraeger

Basic FGF is a prototype of a family of heparin binding growth factors that regulate a variety of cellular responses including cell growth, morphogenesis and differentiation. At least two families of receptors bind bFGF and could mediate its response: (1) tyrosine kinase-containing FGF receptors, designated FGFR-1 to FGFR-4, and (2) heparan sulfate proteoglycans that bind bFGF through their heparan sulfate chains. Both are known to undergo internalization and thus bFGF bound to the different receptors may be internalized via more than one pathway. It is not known whether the intracellular fate of bFGF differs depending upon which receptor binds it at the cell surface. To investigate the respective roles of these receptors in the intracellular targeting of bFGF, we utilized NMuMG cells that bind and internalize bFGF through their heparan sulfate proteoglycans, but do not express detectable levels of FGFRs nor respond to bFGF. Basic FGF conjugated to saporin (bFGF-saporin) was used as a probe to study targeting of bFGF by the different receptors. Saporin is a cytotoxin that has no effect on cells if added exogenously. However, it kills cells if it gains access to the cytoplasm. The NMuMG cells internalize bFGF-saporin but are not killed. Transfecting these cells with FGFR-1 results in bFGF-responsive cells, which bind and internalize bFGF through FGFR-1, and are killed. Removing the heparan sulfate from these cells eliminates killing by bFGF-saporin.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 27 (2) ◽  
pp. 678-688 ◽  
Author(s):  
David H. Lum ◽  
Jenille Tan ◽  
Steven D. Rosen ◽  
Zena Werb

ABSTRACT Heparan sulfate (HS) chains are found in the extracellular matrix, covalently linked to core proteins collectively termed heparan sulfate proteoglycans (HSPGs). A wealth of data has demonstrated roles for HSPGs in the regulation of many cell surface signaling pathways that are crucial during development. Variations in the sulfation pattern along the HS chains influence their ability to interact with molecules such as growth factors, chemokines, morphogens, and adhesion molecules. Sulf1 and Sulf2 are members of a class of recently identified genes that encode heparan sulfate 6-O-endosulfatases (Sulf genes). The removal of 6-O-sulfate from HS via SULF activity influences the function of many factors, including Wnt, fibroblast growth factor, hepatocyte growth factor, heparin-binding epidermal growth factor, and bone morphogenetic protein. Given their possible developmental roles, we have examined Sulf gene expression during mouse embryogenesis. The two Sulf genes are expressed in a broad range of tissues throughout development with largely nonoverlapping expression patterns. Sulf2 transcripts are expressed in the lung, heart, placenta, and ribs. We generated a mouse line possessing a gene trap disruption of the Sulf2 gene. Mice homozygous for the Sulf2 gene trap allele are viable and fertile and have no major developmental defects on several genetic backgrounds. However, we observed strain-specific, nonpenetrant defects affecting viability, lung development, and growth in Sulf2 homozygous animals. These data suggest that Sulf2 may have roles in several tissues but that there is compensation by and/or redundancy with Sulf1.


Sign in / Sign up

Export Citation Format

Share Document