Dilution-Induced Physico-Chemical Changes of Metal Oxide Nanoparticles Due to Homeopathic Preparation Steps of Trituration and Succussion

Homeopathy ◽  
2019 ◽  
Vol 109 (02) ◽  
pp. 065-078
Author(s):  
Abhirup Basu ◽  
Mayur K. Temgire ◽  
Akkihebbal K. Suresh ◽  
Jayesh R. Bellare

Abstract Background Although the presence of starting materials in extreme dilutions of homeopathic medicines has been established, the physico-chemical changes of these materials induced by the manufacturing steps—that is, solid–solid mixing involving grinding (trituration) and slurry mixing involving impact (succussion), followed by dilution—are still unknown. Methods We subjected cupric oxide and zinc oxide nanoparticles (NPs) to the homeopathic processes of trituration and succussion, followed by dilution up to 6 cH. Particle image velocimetry was employed to analyze the fluid motion during succussion and its effect on the NPs. The resulting microstructural and chemical changes at different dilution steps were determined by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and transmission electron microscopy. Results The succussion triggered multi-sized bubble generation and turbulent fluid motion up to a duration of 400 ms, with maximum average velocity of 0.23 m/s. Due to 1% transfer of kinetic energy from a moving eddy with this velocity, upon collision, the rate of temperature change in a particle of size 1 µm and 1 nm was predicted to rise by approximately 102 K/s and 106 K/s respectively. During trituration, the oxide NPs reduced to metals and did not aggregate by remaining within lactose, but they converted to oxidized finer NPs after impact. Silicate chains leached from the vial cross-linked after third dilution, forming large macro-particles and encapsulating the NPs that were retained and carried at higher dilution steps. Conclusion The results showed that the NPs sustained significant rate of temperature change due to energy transfer from moving eddies during succussion. Different physico-chemical changes, such as size reduction, successive reduction and oxidation of NPs, and morphological changes, were achieved through trituration and succussion. The retention of NPs within cross-linked poly-siloxane chains reveals the importance of both the borosilicate glass vial and the ethanol solution during preparation of homeopathic medicines.

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Srihasam Saiganesh ◽  
Thyagarajan Krishnan ◽  
Golla Narasimha ◽  
Hesham S. Almoallim ◽  
Sulaiman Ali Alhari ◽  
...  

Over the past few years, the photogenic fabrication of metal oxide nanoparticles has attracted considerable attention, owing to the simple, eco-friendly, and non-toxic procedure. Herein, we fabricated NiO nanoparticles and altered their optical properties by doping with a rare earth element (lanthanum) using Sesbania grandiflora broth for antibacterial applications. The doping of lanthanum with NiO was systematically studied. The optical properties of the prepared nanomaterials were investigated through UV-Vis diffuse reflectance spectra (UV-DRS) analysis, and their structures were studied using X-ray diffraction analysis. The morphological features of the prepared nanomaterials were examined by scanning electron microscopy and transmission electron microscopy, their elemental structure was analyzed by energy-dispersive X-ray spectral analysis, and their oxidation states were analyzed by X-ray photoelectron spectroscopy. Furthermore, the antibacterial action of NiO and La-doped NiO nanoparticles was studied by the zone of inhibition method for Gram-negative and Gram-positive bacterial strains such as Escherichia coli and Bacillus sublitis. It was evident from the obtained results that the optimized compound NiOLa-04 performed better than the other prepared compounds. To the best of our knowledge, this is the first report on the phytosynthetic fabrication of rare-earth ion Lanthanum (La3+)-doped Nickel Oxide (NiO) nanoparticles and their anti-microbial studies.


2016 ◽  
Vol 37 ◽  
pp. 34-40 ◽  
Author(s):  
A.I. Kozelskaya ◽  
A.V. Panin ◽  
I.A. Khlusov ◽  
P.V. Mokrushnikov ◽  
B.N. Zaitsev ◽  
...  

Author(s):  
Mahbooubeh Mirhosseini ◽  
Roghayeh Dehestani

Background: The spread of pathogenic microorganisms in food and beverage and their resistance to antibiotics have raised major concerns for public health. The aim of this study was to investigate the antimicrobial activity of various metal oxide nanoparticles (NPs) including zinc oxide (ZnO), magnesium oxide (MgO), and iron oxide (Fe2O3) NPs against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the antimicrobial activity of these NPs in milk was studied along with mild heat. Methods: In this experimental study, the antibacterial activity of ZnO, MgO, and Fe2O3 NPs were initially evaluated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Later, the antimicrobial effect of these NPs was investigated in milk along with mild heating. To determine the morphological changes in S. aureus and E. coli, electron microscopy scanning was applied before and after the antimicrobial treatments. Results: The MBC and MIC values presented by Fe2O3, ZnO, and MgO NPs against pathogenic bacteria showed that MgO NPs were the most potent substances for inhibiting the growth of S. aureus and E. coli. The results also indicated that use of these NPs had synergistic effects in combination with the heating treatment. Electron microscopy scanning also revealed that treatment with MgO NPs could distort and impair the cell wall of the pathogenic bacteria, leading to the leakage of intracellular components and bacterial death. Conclusion: The results suggest that MgO, ZnO, and Fe2O3 NPs can be applied for industrial food processing as effective antimicrobial compounds to decrease the temperature required for pasteurizing milk.


2020 ◽  
Vol 10 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Mahmoud Abudayyak ◽  
Elif Guzel ◽  
Gül Özhan

Purpose: The wide application of cupric oxide nanoparticles (copper (II) oxide, CuO-NPs) in various fields has increased exposure to the kind of active nanomaterials, which can cause negative effects on human and environment health. Although CuO-NPs were reported to be harmful to human, there is still a lack information related to their toxic potentials. In the present study, the toxic potentials of CuO-NPs were evaluated in the liver (HepG2 hepatocarcinoma) and intestine (Caco-2 colorectal adenocarcinoma) cells. Methods: After the characterization of particles, cellular uptake and morphological changes were determined. The potential of cytotoxic, genotoxic, oxidative and apoptotic damage was investigated with several in vitro assays. Results: The average size of the nanoparticles was 34.9 nm, about 2%-5% of the exposure dose was detected in the cells and mainly accumulated in different organelles, causing oxidative stress, cell damages, and death. The IC50 values were 10.90 and 10.04 µg/mL by MTT assay, and 12.19 and 12.06 µg/mL by neutral red uptake (NRU) assay, in HepG2 and Caco-2 cells respectively. Apoptosis assumes to the main cell death pathway; the apoptosis percentages were 52.9% in HepG2 and 45.5% in Caco-2 cells. Comet assay result shows that the highest exposure concentration (20 µg/mL) causes tail intensities about 9.6 and 41.8%, in HepG2 and Caco-2 cells, respectively. Conclusion: CuO-NPs were found to cause significant cytotoxicity, genotoxicity, and oxidative and apoptotic effects in both cell lines. Indeed, CuO-NPs could be dangerous to human health even if their toxic mechanisms should be elucidated with further studies.


2013 ◽  
Vol 739 ◽  
pp. 51-56 ◽  
Author(s):  
Mohammad Akbarzadeh ◽  
Hassan Ebadi-Dehaghani ◽  
Meisam Sadeghi

The thermal conductivity (TC) of compression moulded polycarbonate (PC) and PC filled with 2.5-5% iron oxide (α-Fe2O3), cupric oxide (CuO) or magnesium oxide (MgO) nanoparticles, prepared by extrusion, was studied using a thermal conductivity analyser (TCA). The effect of type and content of nanoparticles on the thermal conductivity was investigated. The experimental TC values of the PC nanocomposites showed an increase with an increase in the level of nanoparticles concentration. The TC improvement in PC/CuO nanocomposite was greater than that of other nanocomposites. Several models were used for prediction of the TC in the nanocomposites. In all nanocomposites the TC values correlated well with the values predicted by the Ce Wen Nan model up to 5wt%.


2019 ◽  
Vol 20 (7) ◽  
pp. 542-550 ◽  
Author(s):  
Nahla S. El-Shenawy ◽  
Reham Z. Hamza ◽  
Fawziah A. Al-Salmi ◽  
Rasha A. Al-Eisa

Background: Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG). Methods: Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points. Results: The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group. Conclusion: The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.


Sign in / Sign up

Export Citation Format

Share Document