Validation of the Modified Irregular Unloading-Reloading Rules Based on Davidenkov Skeleton Curve and the Implementation in ABAQUS Software

Author(s):  
Dingfeng Zhao ◽  
Bin Ruan ◽  
Guoxing Chen
2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


2013 ◽  
Vol 419 ◽  
pp. 122-126
Author(s):  
Li Zhang ◽  
Chen Kai ◽  
Xue Jiao Wang

The industrial sewing machine frame is one of the most important components of the sewing machine system, so studying its dynamic characteristics is particularly important. In this paper, based on the 3D model, the theory modal analysis of the industrial sewing machine is conducted with ABAQUS software and the modal experiment analysis is carried out through LMS(Lab Impact Testing system). The experimental results are in good consistency, which shows that the finite element model built in the paper is reasonable. This paper provides theoretical reference for vibration and noise reduction of the industrial sewing machine.


2013 ◽  
Vol 5 (5) ◽  
pp. 400-405 ◽  
Author(s):  
Guoxing Chen ◽  
Hua Pan ◽  
Hui Long ◽  
Xiaojun Li

2012 ◽  
Vol 170-173 ◽  
pp. 3594-3597
Author(s):  
Hai Tao Wan ◽  
Peng Li

Reinforced concrete (RC) shear wall component is a very important lateral force-resisting member which is widely used in China. Its seismic behavior has a great impact on the seismic performance of the overall structure. Damage of some RC shear wall structures under the earthquake is caused by the damage of shear wall components, So shear wall components are an essential seismic members. However, the test datum are not enough to study the performance of RC shear wall components, Therefore, Finite element simulation of RC shear wall components is performed by software ABAQUS in the paper. Through comparing with the finite element simulation and the test of load - displacement skeleton curve, failure mode and steel bar strain, the result shows that the finite element simulation can more accurately simulate the situation of the test, verifying the finite element simulation is the most important research tool besides test.


2014 ◽  
Vol 915-916 ◽  
pp. 668-672 ◽  
Author(s):  
Li Jun Wu ◽  
Chang Cai Zhao ◽  
Guo Jiang Dong

According to the GH3044 nickel-based superalloy with high yield strength, a new approach for superalloy tube named Tube Solid Granules Medium Forming (SGMF) was present, and tube SGMF process principle and the mechanical model of solid granules were designed. The superalloy tube SGMF process was investigated numerically by using User subroutine of Abaqus software, the deforming simulations of two groups of tube products were performed separately, and the elongation rate and thickness distributions of the products were analyzed. An experimental system was designed and developed for tube SGMF, typical GH3044 superalloy tubes were deformed, good correlation was observed between the simulation results and experimental data.


2014 ◽  
Vol 488-489 ◽  
pp. 1047-1051
Author(s):  
Qing Qian Zheng ◽  
Bin Yang ◽  
Ning Chen ◽  
Hui Min Yang ◽  
Min Hu

In this paper, the finite method is applied and ABAQUS software is used, the vortex flow field is loaded as boundary condition of wraps. The stress and deformation in scroll under the action of gas pressure, temperature load and both of them is analyzed, the stress distribution and deformation of wraps in different shaft rotation angles is discussed, the stress distribution and deformation discipline of wraps are also respectively obtained. The results show that the overall stress and deformation in scroll are the largest when compression chamber is moving near the vent position and the thermal deformation is the main factor of affecting the overall deformation of scroll.


2013 ◽  
Vol 700 ◽  
pp. 164-169
Author(s):  
Kai Song ◽  
Chao Wang ◽  
Tao Chen ◽  
Ze Zhou

This paper aims at cover body dent resistance optimization problems, developed a whole process method using the finite element simulation method and the corresponding engineering experience to solve the dent resistance problem. Use of Tcl/Tk language to develop the script for fast simulation model consider material nonlinearity and contact nonlinearity, Use Abaqus software to calculate the results, and then customized to optimize use of simplified script parameters on changes in the working conditions of the structure will be optimized. The results show that this set of process optimization method to solve the variable conditions dent resistance is quickly, efficiently and accurately.


Author(s):  
Guntur Nugroho ◽  

Health monitoring using vibration technique is usually conducted on cable structure. The hanger cable on the suspension bridge has a difference of span. To predict axial force of cable, the beam-string theory includes a parameter of bending stiffness. However, string theory has neglected the effect of bending stiffness. The shorter the span of the cable the greater the effect of the bending stiffness would be. This paper raises parameter moment of inertia to span ratio (I/L) to determine the apropriate analytical formula between string and beam-string. Experimental research was conducted using a vibration technique. The specimens use solid cylindrical steel beam, having length specimens of 2 m, hinge-hinge of boundary condition, and difference variations I/L of 0.024, 0.08, 0.58, 1.53 and 10.22. Numerical analysis was simulated by using Abaqus software v 6.13. The result shows that the ratio of I/L equally lowers than 0.082 has close to the analytical string theory. The ratio of I/L greather than 0.082 has close to the beam string theory.


Sign in / Sign up

Export Citation Format

Share Document