Changes in the growth mode of low temperature GaN buffer layers with nitrogen plasma nitridation of sapphire substrates

1997 ◽  
Vol 71 (9) ◽  
pp. 1228-1230 ◽  
Author(s):  
Min Hong Kim ◽  
Cheolsoo Sone ◽  
Jae Hyung Yi ◽  
Euijoon Yoon
1996 ◽  
Vol 449 ◽  
Author(s):  
Min Hong Kim ◽  
Cheolsoo Sone ◽  
Jae Hyung Yi ◽  
Soun Ok Heur ◽  
Euijoon Yoon

ABSTRACTLow-temperature GaN buffer layers with smooth surfaces and high crystallinity could be prepared by a remote plasma enhanced metalorganic vapor deposition after the pretreatment of substrates with rf nitrogen plasma. Smooth AIN thin layer was formed on the (0001) sapphire substrate by the nitrogen plasma pretreatment for an hour. The AIN layer provided the nucleation sites for the subsequent buffer layer growth, thus highly preferred (0001) GaN buffer layers could be grown on the pretreated substrate. Formation of the AIN layer on sapphire and the surface smoothness were affected by pretreatment parameters such as exposure time, temperature, and rf power.


Author(s):  
М.Х. Гаджиев ◽  
Р.М. Эмиров ◽  
А.Э. Муслимов ◽  
М.Г. Исмаилов ◽  
В.М. Каневский

Results of the formation of superhard coatings in the low-temperature nitrogen plasma treatment process in the open atmosphere of titanium films on sapphire substrates are given. It is shown that during plasma treatment a coating of nitrogen-containing TiO2 with rutile structure is formed with a double increase (in comparison with rutile TiO2) of microhardness (up to 27 GPa). The application of this coating leads to hardening of the surface of sapphire plates by 22-23%. High productivity and implementation of synthesis in an open atmosphere make it possible to consider the proposed procedure is promising for the production of superhard coatings with high resistance to oxygen.


2004 ◽  
Vol 831 ◽  
Author(s):  
Daisuke Muto ◽  
Ryotaro Yoneda ◽  
Hiroyuki Naoi ◽  
Masahito Kurouchi ◽  
Tsutomu Araki ◽  
...  

ABSTRACTThe effects of the nitridation process of (0001) sapphire on crystalline quality of InN were clearly demonstrated. The InN films were grown on NFM (nitrogen flux modulation) HT-InN or LT-InN buffer layers, which had been deposited on nitridated sapphire substrates. We found that low-temperature nitridation of sapphire is effective in improving the tilt distribution of InN films. Whereas the twist distribution remained narrow and almost constant, independent of nitridation conditions, when LT-InN buffer layers were used. The XRC-FWHM value of 54 arcsec for (0002) InN, the lowest reported to date, was achieved by using the LT-InN buffer layer and sapphire nitridation at 300°C for 3 hours.


1996 ◽  
Vol 449 ◽  
Author(s):  
Cheolsoo Sone ◽  
Min Hong Kim ◽  
Jae Hyung Yi ◽  
Soun Ok Heur ◽  
Euijoon Yoon

ABSTRACTWe report the low-temperature growth of GaN layers on (0001) sapphire substrates by a remote plasma enhanced metal-organic chemical vapor deposition in the temperature range of 500 - 800 $C. Effects of process parameters on the growth of GaN were studied. The structural quality of GaN improved as the growth temperature increased and the rf power decreased. Highly oriented GaN layers could be deposited at fairly low temperatures such as 500 $C under low rf power with low growth rate conditions.


2002 ◽  
Vol 237-239 ◽  
pp. 1133-1138 ◽  
Author(s):  
M. Tabuchi ◽  
H. Kyouzu ◽  
Y. Takeda ◽  
S. Yamaguchi ◽  
H. Amano ◽  
...  

2011 ◽  
Author(s):  
Adebowale Olufunso Ajagunna

Among the group-III nitride (III-N) semiconductors, InN has been the leaststudied and also the most complex. However, InN is a promising material for sub-THz electronic devices due to the very high values of its electron low-field mobility(14,000 cm2/V.s) and maximum drift velocity (5.2 x 107 cm/s). InN and InN-richalloys are also very interesting for optoelectronic devices in the IR wavelength regionof telecommunications, as well as tandem solar cell applications, due to its 0.65 eVbandgap. This PhD dissertation is based on the study of plasma assisted molecularbeam epitaxy (PAMBE) of InN on Si (111) and r-plane (1102) sapphire substrates.Epitaxial growth on silicon is interesting for low cost production and/or monolithicintegration with Si integrated circuits (ICs). Growth of a-plane InN on r-plane (1102)sapphire substrates can be used for realizing quantum well heterostructures, free frompolarization induced electric fields. Also, it has been theoretically predicted thatnitrogen stabilized non-polar surfaces could be free from electron accumulation.Direct InN growth on Si (111), using the optimum conditions for InN growthon GaN (0001) – substrate temperature 400-450oC and stoichiometric III/V flux ratio– results to 3D growth mode and porous columnar InN epilayers with bad adhesion atthe InN/Si interface. A two-step growth process was developed, consisting ofnucleating a very thin InN layer on Si at low temperature under N-rich growthconditions, and the growth of the main epilayer at the optimum InN (0001) growthconditions. The fast coalescence of the initial 3D islands of InN results to acontinuous 20 nm InN film on the Si (111) surface with low 10 x 10 μm2 AFM rmssurface roughness of 0.4 nm, which allows the main epilayer to be overgrown in stepflowgrowth mode, achieving an atomically smooth surface. The fast coalescence alsoassists defects annihilation near the InN/Si interface and 0.5 μm films exhibitedthreading dislocation (TD) density of 4.0x109 cm-2 for the edge-type and 1.7x109 cm-2for the screw-type TDs. Similar defect densities were determined by TEM for InNfilms grown after initial deposition of an AlN/GaN nucleation layer on Si. However,those films exhibited significantly better electron mobility and lower crystal mosaicityaccording to XRD rocking curves.The experiments of InN growth on r-plane (1102) Al2O3 substrates revealedthat different InN crystallographic orientations could be realized depending on theInN nucleation conditions. Single crystal cubic (001) InN was grown on r-planesapphire by using one-step growth at ~ 400oC, while polar c-plane (0001) orsemipolar s-plane (1011) InN were observed by using a two-step growth process withInN nucleation at low temperature under N-rich or near stoichiometric III/V flux ratioconditions, respectively. Pure a-plane (1120 ) InN films were realized only when aplaneGaN or AlN nucleation-buffer layers were initially grown on r-plane sapphire.The structural quality of the a-plane InN films improved with increasing epilayerthickness, which is attributed to interaction and annihilation of defects. However, thegrowth of a-plane InN proceeds in 3D growth mode resulting to increasing surfaceroughness with increasing film thickness. A comparative study of the thicknessdependent electrical properties of a-plane InN films grown on r-plane Al2O3 and cplanefilms grown on GaN/Al2O3 (0001) templates was carried out by roomtemperature Hall-effect measurements. For both InN orientations, a rather linearincrease of the electron sheet density (NS) with increasing thickness, consistent with aconstant bulk concentration around 1 x 1019 cm-3 was observed. However, the electron mobilities of the c-plane InN films were more than three times those of the a-planefilms, attributed to the presence of higher dislocation density (1.4 x 1011 cm-2) in thea-plane InN films. The analysis of the Hall-effect measurements, by considering thecontribution of two conducting layers, indicates a similar accumulation of lowmobility electrons with NS > 1014 cm-2 at the films’ surface/interfacial region for boththe a- and c-plane InN films. In general, similar electron concentrations weremeasured for all the different orientation InN films (polar c-plane, non-polar a-plane,semi-polar s-plane and cubic (001) InN). This suggests that similar surface/interfacialelectron accumulation occurs independently of the InN crystallographic orientation,and the bulk donors are not related to the threading dislocations, since significantvariations of defect densities occur for the different InN orientations. A SIMSinvestigation of a c-plane InN film exhibiting electron concentration of 1.09 x 1020cm-3 excludes hydrogen as the possible donor since its concentrations was 6.5x1018cm-3. Only oxygen approached a concentration level near 1020 cm-3 and this might bethe unintentionally incorporated donor.Finally, the spontaneous growth of InN nanopillars (NPs) on Si (111) and rplanesapphire substrates was investigated. Optimization of the different growthparameters resulted to well-separated (0001) InN NPs on Si (111) that exhibitedphotoluminescence. Almost in all cases, the growth rate of the InN NPs along the caxisis multiple of the In-limited growth rate. A non-uniform amorphous SixNy layerwas inevitable under unoptimised growth conditions, leading to frequently observedNP misorientation (tilt) on Si substrates. Only c-axis oriented InN NPs were formedon the r-plane sapphire substrates.In conclusion, the thesis has created new scientific knowledge for theheteroepitaxy of InN on Si (111) and (1102) sapphire. Comparison with c-plane InNgrown on GaN (0001) allowed the generic characteristics of InN to be extracted fromthe orientation-dependent ones.


2003 ◽  
Vol 93 (2) ◽  
pp. 1311-1319 ◽  
Author(s):  
M. Sumiya ◽  
N. Ogusu ◽  
Y. Yotsuda ◽  
M. Itoh ◽  
S. Fuke ◽  
...  

1999 ◽  
Vol 85 (5) ◽  
pp. 2921-2928 ◽  
Author(s):  
Toshiko Mizokuro ◽  
Kenji Yoneda ◽  
Yoshihiro Todokoro ◽  
Hikaru Kobayashi

Sign in / Sign up

Export Citation Format

Share Document