VHE observations of high energy peak BL Lacs

2001 ◽  
Author(s):  
P. M. Chadwick
2019 ◽  
Vol 33 (02) ◽  
pp. 1950006
Author(s):  
Huaisong Zhao ◽  
Jiasheng Qian ◽  
Sheng Xu ◽  
Feng Yuan

Based on the t-J model and slave-boson theory, we have studied the electronic structure in one-dimensional SrCuO2 by calculating the electron spectrum. Our results show that the electron spectra are mainly composed of three parts in one-dimensional SrCuO2, a sharp low-energy peak, a broad intermediate-energy peak and a high-energy peak. The sharp low-energy peak corresponds to the main band (MB) while the broad intermediate-energy peak and high-energy peak are associated with the shadow band (SB) and high-energy band (HB), respectively. From low-energy to intermediate-energy region, a clear two-peak structure (MB and SB) around the momentum [Formula: see text] appears, and the distance between two peaks decreases along the momentum direction from [Formula: see text] to [Formula: see text], then disappears at the critical momentum point [Formula: see text], leaving a single peak above [Formula: see text]. The electron spectral function in one-dimensional SrCuO2 is also the doping and temperature dependent. In particular, in the very low doping concentration, the HB merges into the MB. However, with the increases of the doping concentration, the HB separates from the MB and moves quickly to the high-binding energy region. The HB and MB are the direct results of the spin-charge separation while SB is the result of strong interaction between charge and spin parts. Therefore, our theoretical result predicts that the HB is more likely to be found at the low doping concentration, and it will be drowned in the background when the doping concentration is larger. Then with the temperature increases, the magnitude of the SB decreases, and it disappears at high temperature.


2020 ◽  
Vol 638 ◽  
pp. A14 ◽  
Author(s):  
◽  
V. A. Acciari ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
A. Arbet Engels ◽  
...  

1ES 1959+650 is a bright TeV high-frequency-peaked BL Lac object exhibiting interesting features like “orphan” TeV flares and broad emission in the high-energy regime that are difficult to interpret using conventional one-zone Synchrotron Self-Compton (SSC) scenarios. We report the results from the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) observations in 2016 along with the multi-wavelength data from the Fermi Large Area Telescope (LAT) and Swift instruments. MAGIC observed 1ES 1959+650 with different emission levels in the very-high-energy (VHE, E >  100 GeV) γ-ray band during 2016. In the long-term data, the X-ray spectrum becomes harder with increasing flux and a hint of a similar trend is also visible in the VHE band. An exceptionally high VHE flux reaching ∼3 times the Crab Nebula flux was measured by MAGIC on the 13 and 14 of June, and 1 July 2016 (the highest flux observed since 2002). During these flares, the high-energy peak of the spectral energy distribution (SED) lies in the VHE domain and extends up to several TeV. The spectrum in the γ-ray (both Fermi-LAT and VHE bands) and the X-ray bands are quite hard. On 13 June and 1 July 2016, the source showed rapid variations in the VHE flux within timescales of less than an hour. A simple one-zone SSC model can describe the data during the flares requiring moderate to large values of the Doppler factors (δ ≥ 30−60). Alternatively, the high-energy peak of the SED can be explained by a purely hadronic model attributed to proton-synchrotron radiation with jet power Ljet ∼ 1046 erg s−1 and under high values of the magnetic field strength (∼100 G) and maximum proton energy (∼few EeV). Mixed lepto-hadronic models require super-Eddington values of the jet power. We conclude that it is difficult to get detectable neutrino emission from the source during the extreme VHE flaring period of 2016.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 495
Author(s):  
Leon Hamui ◽  
María Elena Sánchez-Vergara ◽  
Rocio Sánchez-Ruiz ◽  
Cecilio Álvarez-Toledano ◽  
Jose Luis Reyes-Rodriguez ◽  
...  

The doping and crystallization of the molecular semiconductor formed from the magnesium phthalocyanine (MgPc) and 1-(4-Methoxyphenyl)-2,2,6,6-tetramethyl-5-phenylhepta-3,4-dienedioic (MTPDA) acid was carried out in this work. The crystals obtained were characterized by using transmission electronic microscopy (TEM), Raman spectroscopy, and X-Ray diffraction (XRD), to later evaluate their optical behavior. Raman, IR, and UV–Vis results indicate that the MgPc has been doped with the MTPDA. A uniform material layer with particles is observed as a result of a two-stage process, nucleation and growth. The polycrystalline films are constituted by a mixture of α and β phases with crystalline sizes of ~7 nm, 14 nm, and 20 nm average sizes. The films exhibit a preferred orientation along the [001]. The MTPDA doping does not have an important effect on the molecule planar distances indicating that the MTPDA molecule is among the equivalent MgPc plane direction. A transparent region with a minimum at 483 nm is observed, also a B-band at 337 nm and a Q-band transition with a high-energy peak around 639 nm, and a low energy peak around 691 nm.


2019 ◽  
Vol 491 (2) ◽  
pp. 1934-1940 ◽  
Author(s):  
Rukaiya Khatoon ◽  
Zahir Shah ◽  
Ranjeev Misra ◽  
Rupjyoti Gogoi

ABSTRACT We present a detailed study of flux and index distributions of three blazars [one flat-spectrum radio quasar (FSRQ) and two BL Lacertae objects (BL Lacs)] by using 16 yr of Rossi X-ray Timing Explorer (RXTE) archival data. The three blazars were chosen such that their flux and index distributions have sufficient number of data points (≥90) with relatively less uncertainty $\left(\overline{\sigma _{\rm err}^{2}}/\sigma ^{2} < 0.2\right)$ in light curves. Anderson–Darling (AD) test and histogram fitting show that flux distribution of FSRQ 3C 273 is lognormal, while its photon index distribution is Gaussian. This result is consistent with linear Gaussian perturbation in the particle acceleration time-scale, which produces lognormal distribution in flux. However, for two BL Lacs, viz. Mrk 501 and Mrk 421, AD test shows that their flux distributions are neither Gaussian nor lognormal, and their index distributions are non-normal. The histogram fitting of Mrk 501 and Mrk 421 suggests that their flux distributions are more likely to be a bimodal, and their index distributions are double Gaussian. Since, Sinha et al. had shown that Gaussian distribution of index produces a lognormal distribution in flux, double Gaussian distribution of index in Mrk 501 and Mrk 421 indicates that their flux distributions are probably double lognormal. Observation of double lognormal flux distribution with double Gaussian distribution in index reaffirms two flux states hypothesis. Further, the difference observed in the flux distribution of FSRQ (3C 273) and BL Lacs (Mrk 501 and Mrk 421) at X-rays suggests that the low-energy emitting electrons have a single lognormal flux distribution, while the high-energy ones have a double lognormal flux distribution.


2016 ◽  
Vol 74 (7) ◽  
pp. 1561-1576 ◽  
Author(s):  
Y. Amerlinck ◽  
W. De Keyser ◽  
G. Urchegui ◽  
I. Nopens

At wastewater treatment plants (WWTPs) aeration is the largest energy consumer. This high energy consumption requires an accurate assessment in view of plant optimization. Despite the ever increasing detail in process models, models for energy production still lack detail to enable a global optimization of WWTPs. A new dynamic model for a more accurate prediction of aeration energy costs in activated sludge systems, equipped with submerged air distributing diffusers (producing coarse or fine bubbles) connected via piping to blowers, has been developed and demonstrated. This paper addresses the model structure, its calibration and application to the WWTP of Mekolalde (Spain). The new model proved to give an accurate prediction of the real energy consumption by the blowers and captures the trends better than the constant average power consumption models currently being used. This enhanced prediction of energy peak demand, which dominates the price setting of energy, illustrates that the dynamic model is preferably used in multi-criteria optimization exercises for minimizing the energy consumption.


1980 ◽  
Vol 5 ◽  
pp. 677-687 ◽  
Author(s):  
William H.-M. Ku

The launch of the Einstein Observatory has added a new and exciting dimension to the study of active galaxies. Not only have a large number of optical and radio active galaxies been detected, but many new examples of high energy activity have been found. The ease with which a large number of quasars may now be studied in the X-ray regime out to a redshift of at least four promises to improve our understanding of the nature of these tremendous powerhouses and the evolution of the universe.The Columbia Astrophysics Laboratory (CAL) is carrying out an extensive program to study active galaxies with the imaging proportional counter (IPC) on board the Einstein Observatory (Giacconi et al. 1979). These observations have already yielded a large number of positive detections including four Seyferts, five N galaxies, seven BL Lacs, and 17 quasars. Upper limits were obtained for eight additional quasars. Six new Seyfert I and/or quasars have been identified from X-ray observations (Chanan 1979). Preliminary results from the first six months of the CAL survey of active galaxies will be presented below. A few representative objects of interest will be discussed briefly. Simple statistical tests will be applied to determine whether X-ray properties can be used to understand the differences and similarities between the various classes of active galaxies. Particular emphasis will be placed on the quasars in our sample. Our results for the quasar survey will be compared with those discussed by Tananbaum et al. (1979). Finally, the implications of the discovery of a large number of quasars will be briefly discussed. (Cosmological parameters of qo = 0 and Ho = 50 km (s Mpc)-1 are used throughout.)


2010 ◽  
Vol 19 (06) ◽  
pp. 831-839 ◽  
Author(s):  
◽  
BENOIT LOTT

The first three months of sky-survey operation with the Large Area Telescope (LAT) on board the Fermi satellite revealed 132 bright sources at |b| > 10° with test statistic greater than 100 (corresponding to about 10σ). Two methods, based on the CGRaBS, CRATES and BZCat catalogs, indicated high-confidence associations of 106 of these sources with known AGNs. This sample is referred to as the LAT Bright AGN Sample (LBAS). It contains two radio galaxies, namely Centaurus A and NGC 1275, and 104 blazars consisting of 58 flat spectrum radio quasars (FSRQs), 42 BL Lac objects, and four blazars with unknown classification. Remarkably, the LBAS includes 10 high-energy-peaked BL Lacs. Only 33 of the sources, plus two at |b| < 10°, were previously detected with EGRET, probably due to variability. The analysis of the gamma-ray properties of the LBAS sources reveals that the average GeV spectra of BL Lac objects are significantly harder than the spectra of FSRQs. Other spectral and variability blazar properties are discussed. Some prominent Fermi-detected radiogalaxies are presented.


Sign in / Sign up

Export Citation Format

Share Document