X‐RAY DYNAMICAL DIFFRACTION EFFECTS OF OXIDE FILMS ON SILICON SUBSTRATES

1968 ◽  
Vol 13 (1) ◽  
pp. 40-42 ◽  
Author(s):  
J. R. Patel ◽  
Norio Kato
2015 ◽  
Vol 22 (6) ◽  
pp. 1410-1418 ◽  
Author(s):  
Minas K. Balyan

Two-wave symmetric Bragg-case dynamical diffraction of a plane X-ray wave in a crystal with third-order nonlinear response to the electric field is considered theoretically. For certain diffraction conditions for a non-absorbing perfect semi-infinite crystal in the total reflection region an analytical solution is found. For the width and for the center of the total reflection region expressions on the intensity of the incidence wave are established. It is shown that in the nonlinear case the total reflection region exists below a maximal intensity of the incidence wave. With increasing intensity of the incidence wave the total reflection region's center moves to low angles and the width decreases. Using numerical calculations for an absorbing semi-infinite crystal, the behavior of the reflected wave as a function of the intensity of the incidence wave and of the deviation parameter from the Bragg condition is analyzed. The results of numerical calculations are compared with the obtained analytical solution.


MRS Advances ◽  
2019 ◽  
Vol 5 (29-30) ◽  
pp. 1585-1591 ◽  
Author(s):  
Adriana Valério ◽  
Sérgio L. Morelhão ◽  
Alex J. Freitas Cabral ◽  
Márcio M. Soares ◽  
Cláudio M. R. Remédios

ABSTRACTIn situ X-ray diffraction is one of the most useful tools for studying a variety of processes, among which crystallization of nanoparticles where phase purity and size control are desired. Growth kinetics of a single phase can be completely resolved by proper analysis of the diffraction peaks as a function of time. The peak width provides a parameter for monitoring the time evolution of the particle size distribution (PSD), while the peak area (integrated intensity) is directly related to the whole diffracting volume of crystallized material in the sample. However, to precisely describe the growth kinetics in terms of nucleation and coarsening, the correlation between PSD parameters and diffraction peak widths has to be established in each particular study. Corrections in integrated intensity values for physical phenomena such as variation in atomic thermal vibrations and dynamical diffraction effects have also to be considered in certain cases. In this work, a general correlation between PSD median value and diffraction peak width is deduced, and a systematic procedure to resolve time-dependent lognormal PSDs from in situ XRD experiments is described in details. A procedure to correct the integrated intensities for dynamical diffraction effects is proposed. As a practical demonstration, this analytical procedure has been applied to the single-phase crystallization process of bismuth ferrite nanoparticles.


2016 ◽  
Vol 23 (5) ◽  
pp. 1272-1272
Author(s):  
Minas K. Balyan

Formulae in the paper by Balyan (2015) [J. Synchrotron Rad.22, 1410–1418] are corrected.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 749-753
Author(s):  
S. V. JAGADEESH CHANDRA ◽  
D. S. PARK ◽  
S. UTHANNA ◽  
CHEL-JONG CHOI ◽  
A. GURUVA REDDY

RF magnetron sputtering technique was employed for deposition of tantalum oxide films on p-type silicon substrates by sputtering of pure tantalum oxide target in the presence of oxygen and argon gases at a temperature of 303 K. X-ray photoelectron spectroscopic and X-ray diffraction studies indicated that the films annealed at 773 K were stoichiometric and polycrystalline respectively. The accumulation capacitance for the devices in a structure of Al/Ta2O5/p-Si has been decreased noticeably lower values for the devices annealed at high temperatures. Improved current–voltage characteristics were observed for all annealed devices with Poole–Frenkel conduction mechanism.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4169
Author(s):  
Gennady Gorokh ◽  
Natalia Bogomazova ◽  
Abdelhafed Taleb ◽  
Valery Zhylinski ◽  
Timur Galkovsky ◽  
...  

The process of layer-by-layer ionic deposition of tin-tungsten oxide films on smooth silicon substrates and nanoporous anodic alumina matrices has been studied. To achieve the film deposition, solutions containing cationic SnF2 or SnCl2 and anionic Na2WO4 or (NH4)2O·WO3 precursors have been used. The effect of the solution compositions on the films deposition rates, morphology, composition, and properties was investigated. Possible mechanisms of tin-tungsten oxide films deposition into the pores and on the surface of anodic alumina are discussed. The electro-physical and gas-sensitive properties of nanostructured SnxWyOz films have been investigated. The prepared nanocomposites exhibit stable semiconductor properties characterized by high resistance and low temperature coefficient of electrical resistance of about 1.6 × 10−3 K−1. The sensitivity of the SnxWyOz films to 2 and 10 ppm concentrations of ammonia at 523 K was 0.35 and 1.17, respectively. At concentrations of 1 and 2 ppm of nitrogen dioxide, the sensitivity was 0.48 and 1.4, respectively, at a temperature of 473 K. At the temperature of 573 K, the sensitivity of 1.3 was obtained for 100 ppm of ethanol. The prepared nanostructured tin-tungsten oxide films showed promising gas-sensitivity, which makes them a good candidate for the manufacturing of gas sensors with high sensitivity and low power consumption.


2021 ◽  
Author(s):  
Ghada El Jamal ◽  
Thomas Gouder ◽  
Rachel Eloirdi ◽  
Evgenia Tereshina-Chitrova ◽  
Lukáš Horák ◽  
...  

X-Ray Photoelectron Spectroscopy (XPS) has been used to study the effect of mixed H2O/H2 gas plasma on the surface of UO2, U2O5 and UO3 thin films at 400 °C. The...


Sign in / Sign up

Export Citation Format

Share Document