Ion mediated nucleation and anthropogenic aerosol indirect radiative forcing

2013 ◽  
Author(s):  
Fangqun Yu ◽  
Gan Luo ◽  
Xiaoyan Ma
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhili Wang ◽  
Lei Lin ◽  
Yangyang Xu ◽  
Huizheng Che ◽  
Xiaoye Zhang ◽  
...  

AbstractAnthropogenic aerosol (AA) forcing has been shown as a critical driver of climate change over Asia since the mid-20th century. Here we show that almost all Coupled Model Intercomparison Project Phase 6 (CMIP6) models fail to capture the observed dipole pattern of aerosol optical depth (AOD) trends over Asia during 2006–2014, last decade of CMIP6 historical simulation, due to an opposite trend over eastern China compared with observations. The incorrect AOD trend over China is attributed to problematic AA emissions adopted by CMIP6. There are obvious differences in simulated regional aerosol radiative forcing and temperature responses over Asia when using two different emissions inventories (one adopted by CMIP6; the other from Peking university, a more trustworthy inventory) to driving a global aerosol-climate model separately. We further show that some widely adopted CMIP6 pathways (after 2015) also significantly underestimate the more recent decline in AA emissions over China. These flaws may bring about errors to the CMIP6-based regional climate attribution over Asia for the last two decades and projection for the next few decades, previously anticipated to inform a wide range of impact analysis.


2017 ◽  
Vol 17 (14) ◽  
pp. 8903-8922 ◽  
Author(s):  
Yang Yang ◽  
Hailong Wang ◽  
Steven J. Smith ◽  
Richard Easter ◽  
Po-Lun Ma ◽  
...  

Abstract. The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is −0.42 W m−2, with −0.31 W m−2 contributed by anthropogenic sulfate and −0.11 W m−2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of −0.44 W m−2. DMS has the largest contribution, explaining −0.23 W m−2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.


2011 ◽  
Vol 11 (8) ◽  
pp. 24085-24125 ◽  
Author(s):  
E. M. Leibensperger ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
W.-T. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period, based on historical emission inventories and future projections from the IPCC A1B scenario. The aerosol simulation is evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that it peaked in 1970–1990, with values over the eastern US (east of 100° W) of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2), nitrate (−0.2 W m−2), organic carbon (−0.2 W m−2), and black carbon (+0.4 W m−2). The aerosol indirect effect is of comparable magnitude to the direct forcing. We find that the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60 % from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources may have already been realized by 2010, however some additional warming is expected through 2020. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010) suggests that an emission control strategy focused on BC would have only limited climate benefit.


2007 ◽  
Vol 7 (3) ◽  
pp. 7171-7233 ◽  
Author(s):  
P. Stier ◽  
J. H. Seinfeld ◽  
S. Kinne ◽  
O. Boucher

Abstract. We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from –0.79 to –0.53 W m−2 (33%) and all-sky from –0.47 to –0.13 W m−2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36%) clear-sky and of 0.12 W m−2 (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W m−2 and a positive TOA forcing perturbation of 0.02 W m−2. The long-wave aerosol radiative effects are small for anthropogenic aerosols but become of relevance for the larger natural dust and sea-salt aerosols.


2021 ◽  
Author(s):  
Karsten Haustein

<p class="p1">The role of external (radiative) forcing factors and internal unforced (ocean) low-frequency variations in the instrumental global temperature record are still hotly debated. More recent findings point towards a larger contribution from changes in external forcing, but the jury is still out. While the estimation of the human-induced total global warming fraction since pre-industrial times is fairly robust and mostly independent of multidecadal internal variability, this is not necessarily the case for key regional features such as Arctic amplification or enhanced warming over continental land areas. Accounting for the slow global temperature adjustment after strong volcanic eruptions, the spatially heterogeneous nature of anthropogenic aerosol forcing and known biases in the sea surface temperature record, almost all of the multidecadal fluctuations observed over at least the last 160+ years can be explained without a relevant role for internal variability. Using a two-box response model framework, I will demonstrate that not only multidecadal variability is very likely a forced response, but warming trends over the past 40+ years are entirely attributable to human factors. Repercussions for amplifed European (or D-A-CH for that matter) warming and associated implications for extreme weather events are discussed. Further consideration is given to the communications aspect of such critical results as well as the question of wider societal impacts.</p>


Author(s):  
Jim Haywood ◽  
Leo Donner ◽  
Andy Jones ◽  
Jean-Christophe Golaz

2012 ◽  
Vol 12 (12) ◽  
pp. 5583-5602 ◽  
Author(s):  
C. Déandreis ◽  
Y. Balkanski ◽  
J. L. Dufresne ◽  
A. Cozic

Abstract. This paper describes the impact on the sulfate aerosol radiative effects of coupling the radiative code of a global circulation model with a chemistry-aerosol module. With this coupling, temporal variations of sulfate aerosol concentrations influence the estimate of aerosol radiative impacts. Effects of this coupling have been assessed on net fluxes, radiative forcing and temperature for the direct and first indirect effects of sulfate. The direct effect respond almost linearly to rapid changes in concentrations whereas the first indirect effect shows a strong non-linearity. In particular, sulfate temporal variability causes a modification of the short wave net fluxes at the top of the atmosphere of +0.24 and +0.22 W m−2 for the present and preindustrial periods, respectively. This change is small compared to the value of the net flux at the top of the atmosphere (about 240 W m−2). The effect is more important in regions with low-level clouds and intermediate sulfate aerosol concentrations (from 0.1 to 0.8 μg (SO4) m−3 in our model). The computation of the aerosol direct radiative forcing is quite straightforward and the temporal variability has little effect on its mean value. In contrast, quantifying the first indirect radiative forcing requires tackling technical issues first. We show that the preindustrial sulfate concentrations have to be calculated with the same meteorological trajectory used for computing the present ones. If this condition is not satisfied, it introduces an error on the estimation of the first indirect radiative forcing. Solutions are proposed to assess radiative forcing properly. In the reference method, the coupling between chemistry and climate results in a global average increase of 8% in the first indirect radiative forcing. This change reaches 50% in the most sensitive regions. However, the reference method is not suited to run long climate simulations. We present other methods that are simpler to implement in a coupled chemistry/climate model and that offer the possibility to assess radiative forcing.


2008 ◽  
Vol 8 (21) ◽  
pp. 6405-6437 ◽  
Author(s):  
S. Kloster ◽  
F. Dentener ◽  
J. Feichter ◽  
F. Raes ◽  
J. van Aardenne ◽  
...  

Abstract. We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to −2.00 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by −1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing could be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extent be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations caused by future air pollution mitigation, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.


2014 ◽  
Vol 14 (11) ◽  
pp. 5513-5527 ◽  
Author(s):  
C. L. Heald ◽  
D. A. Ridley ◽  
J. H. Kroll ◽  
S. R. H. Barrett ◽  
K. E. Cady-Pereira ◽  
...  

Abstract. The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). In this study we couple a global chemical transport model (GEOS-Chem) with a radiative transfer model (RRTMG) to contrast these concepts. We estimate a global mean all-sky aerosol DRF of −0.36 Wm−2 and a DRE of −1.83 Wm−2 for 2010. Therefore, natural sources of aerosol (here including fire) affect the global energy balance over four times more than do present-day anthropogenic aerosols. If global anthropogenic emissions of aerosols and their precursors continue to decline as projected in recent scenarios due to effective pollution emission controls, the DRF will shrink (−0.22 Wm−2 for 2100). Secondary metrics, like DRE, that quantify temporal changes in both natural and anthropogenic aerosol burdens are therefore needed to quantify the total effect of aerosols on climate.


Sign in / Sign up

Export Citation Format

Share Document