Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges

2018 ◽  
Vol 148 (19) ◽  
pp. 193701 ◽  
Author(s):  
Roland Kjellander
2015 ◽  
Vol 112 (24) ◽  
pp. 7432-7437 ◽  
Author(s):  
Matthew A. Gebbie ◽  
Howard A. Dobbs ◽  
Markus Valtiner ◽  
Jacob N. Israelachvili

Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.


Author(s):  
Till El Harrar ◽  
Benedikt Frieg ◽  
Mehdi D. Davari ◽  
Karl-Erich Jaeger ◽  
Ulrich Schwaneberg ◽  
...  

2021 ◽  
Vol 188 (2) ◽  
Author(s):  
Tomasz Rębiś ◽  
Michał Niemczak ◽  
Patrycja Płócienniczak ◽  
Juliusz Pernak ◽  
Grzegorz Milczarek

AbstractAn electrochemical sensor was fabricated utilizing ionic liquids possessing cations with long alkyl chains such as trimethyl octadecylammonium and behenyl trimethylammonium and ascorbate anion. The ionic liquids were drop-coated onto the electrode. Thin modifying layers were prepared. Cyclic voltammetric investigations revealed electrostatic interactions between the electrochemical probes and the modified surface, proving that a positive charge was established at the film surface. Hence, negatively charged species such as nitrite can be pre-concentrated on the surface of presented modified electrodes. The fabricated electrodes have been used as a voltammetric sensor for nitrite. Due to the electrostatic accumulation properties of long alkyl cation, the assay exhibits a remarkable improvement in the voltammetric response toward nitrite oxidation. The influence of pH on the electrode response was thoroughly investigated, and the mechanism of the electrode was established. The developed sensor showed a linear electrochemical response in the range 1.0–50 μM with a detection limit of 0.1 μM. The electrode revealed good storage stability, reproducibility, and anti-interference ability. The determination of nitrite performed in curing salts brought satisfactory results. Graphical abstract


2019 ◽  
Vol 21 (22) ◽  
pp. 11642-11650 ◽  
Author(s):  
Ruslan N. Tazhigulov ◽  
Pradeep Kumar Gurunathan ◽  
Yongbin Kim ◽  
Lyudmila V. Slipchenko ◽  
Ksenia B. Bravaya

We present a computational protocol exploiting polarizable embedding hybrid quantum-classical approach and resulting in accurate estimates of redox potentials of biological macromolecules. A special attention is paid to fundamental aspects of the theoretical description such as the effects of environment polarization and of the long-range electrostatic interactions on the computed energetic parameters.


2015 ◽  
Vol 17 (27) ◽  
pp. 17838-17843 ◽  
Author(s):  
Kenta Fujii ◽  
Shinji Kohara ◽  
Yasuhiro Umebayashi

A new function, SQpeak(r); a connection between low-Q peak intensity with real space structure.


2011 ◽  
Vol 2 ◽  
pp. 552-560 ◽  
Author(s):  
Miriam Jaafar ◽  
Oscar Iglesias-Freire ◽  
Luis Serrano-Ramón ◽  
Manuel Ricardo Ibarra ◽  
Jose Maria de Teresa ◽  
...  

The most outstanding feature of scanning force microscopy (SFM) is its capability to detect various different short and long range interactions. In particular, magnetic force microscopy (MFM) is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures. It is a usual procedure to separate the topography and the magnetic signal by scanning at a lift distance of 25–50 nm such that the long range tip–sample interactions dominate. Nowadays, MFM is becoming a valuable technique to detect weak magnetic fields arising from low dimensional complex systems such as organic nanomagnets, superparamagnetic nanoparticles, carbon-based materials, etc. In all these cases, the magnetic nanocomponents and the substrate supporting them present quite different electronic behavior, i.e., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force microscopy (KPFM) and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample.


2020 ◽  
Author(s):  
Alexander Schlaich ◽  
Dongliang Jin ◽  
Lyderic Bocquet ◽  
Benoit Coasne

Abstract Of particular relevance to energy storage, electrochemistry and catalysis, ionic and dipolar liquids display a wealth of unexpected fundamental behaviors – in particular in confinement. Beyond now well-documented adsorption, overscreening and crowding effects1,2,3, recent experiments have highlighted novel phenomena such as unconventional screening4 and the impact of the electronic nature – metallic versus insulating – of the confining surface on wetting/phase transitions5,6. Such behaviors, which challenge existing theoretical and numerical modeling frameworks, point to the need for new powerful tools to embrace the properties of confined ionic/dipolar liquids. Here, we introduce a novel atom-scale approach which allows for a versatile description of electronic screening while capturing all molecular aspects inherent to molecular fluids in nanoconfined/interfacial environments. While state of the art molecular simulation strategies only consider perfect metal or insulator surfaces, we build on the Thomas-Fermi formalism for electronic screening to develop an effective approach that allows dealing with any imperfect metal between these asymptotes. The core of our approach is to describe electrostatic interactions within the metal through the behavior of a `virtual' Thomas-Fermi fluid of charged particles, whose Debye length sets the Thomas-Fermi screening length λ in the metal. This easy-to-implement molecular method captures the electrostatic interaction decay upon varying λ from insulator to perfect metal conditions, while describing very accurately the capacitance behavior – and hence the electrochemical properties – of the metallic confining medium. By applying this strategy to a nanoconfined ionic liquid, we demonstrate an unprecedented wetting transition upon switching the confining medium from insulating to metallic. This novel approach provides a powerful framework to predict the unsual behavior of ionic liquids, in particular inside nanoporous metallic structures, with direct applications for energy storage and electrochemistry.


2017 ◽  
Vol 8 (2) ◽  
pp. 1378-1390 ◽  
Author(s):  
Mrityunjay K. Tiwari ◽  
Kumar Vanka

It has been well established that long range secondary electrostatic interactions (SEIs) have a significant effect on the stability of supramolecular complexes.


2019 ◽  
Author(s):  
Ελένη Αζά

The discovery of materials with coexisting magnetic and ferroelectric orders, has revived theinterest of condensed matter physics and materials’ science communities maintaining the greatpromise of such fundamental mechanisms in devising applications ranging from portablemagnetoelectric (ME) sensors and memories to radar technologies. The present PhD thesis is a study in the field of strongly correlated systems where coupled properties arise from the interplay of charge and spin degrees of freedom over lattice topologies enabling competing magnetic interactions and therefore emergence of coupling of electric and magnetic order. Non-perovskite, two-dimensional (2D) Na-Mn-O oxides are revisited in scope of this in both polycrystalline and large single crystal forms. Among Na-deficient polymorphs, hexagonal α-Na0.7MnO2 (single crystals) has been investigated for the first time as a playground of competing interactions due to mixed Mnvalence (Mn4+ / Mn3+), fostered by Na vacancies in the structure. The competition of FM (Mn3+-Mn4+) and AFM (Mn3+ -Mn3+) interactions is believed to be the origin of the magnetic instability leading to a glassy ground state leaving also their footprint in the dielectric permittivity measurements. Competing FM and AFΜ interactions are also investigated as the origin of the anisotropic magnetic properties witnessed in a-NaxMnO2 (x= 0.96) single crystals. Neutron single crystal experiments show a well-established AFM long range order which vanishes above 26 K whilea coexistent canted antiferromagnetic state persists up to 45 K. In both alpha powders and aNa0.96MnO2 single crystals, the dielectric permittivity suggests the onset of the commensuratemagnetic long range order (T~ 45 K) which in the case of the powders allows a magnetocapacitance effect. Compositional modulations in β-NaMnO2, which are depicted as an intergrowth of α- and βlike oxygen coordinations, are found to trigger a proper-screw magnetic ground state which evolves into collinear commensurate AFM state. Features in the dielectric permittivity coincide with the onset of the commensurate AFM order giving away also the contribution of the α- structural domains. Further understanding of the mechanisms that dictate the relief of frustrated interactions and establishment of magnetic order together with the role of structural complexity in the form of domains or domain-walls is a direction that warrants further exploration as it will help us to resolve whether other coupled electron degrees of freedom are likely to be generated in this family of oxides.


Sign in / Sign up

Export Citation Format

Share Document