scholarly journals Experimental setup combining in situ hard X-ray photoelectron spectroscopy and real-time surface X-ray diffraction for characterizing atomic and electronic structure evolution during complex oxide heterostructure growth

2019 ◽  
Vol 90 (9) ◽  
pp. 093902 ◽  
Author(s):  
Gyula Eres ◽  
C. M. Rouleau ◽  
Q. Lu ◽  
Z. Zhang ◽  
E. Benda ◽  
...  
Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 62 ◽  
Author(s):  
Gunugunuri K. Reddy ◽  
Torin C. Peck ◽  
Charles A. Roberts

Direct decomposition of NO into N2 and O2 (2NO→N2 + O2) is recognized as the “ideal” reaction for NOx removal because it needs no reductant. It was reported that the spinel Co3O4 is one of the most active single-element oxide catalysts for NO decomposition at higher reaction temperatures, however, activity remains low below 650 °C. The present study aims to investigate new promoters for Co3O4, specifically PdO vs. PtO. Interestingly, the PdO promoter effect on Co3O4 was much greater than the PtO effect, yielding a 4 times higher activity for direct NO decomposition at 650 °C. Also, Co3O4 catalysts with the PdO promoter exhibit higher selectivity to N2 compared to PtO/Co3O4 catalysts. Several characterization measurements, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and in situ FT-IR, were performed to understand the effect of PdO vs. PtO on the properties of Co3O4. Structural and surface analysis measurements show that impregnation of PdO on Co3O4 leads to a greater ease of reduction of the catalysts and an increased thermal stability of surface adsorbed NOx species, which contribute to promotion of direct NO decomposition activity. In contrast, rather than remaining solely as a surface species, PtO enters the Co3O4 structure, and it promotes neither redox properties nor NO adsorption properties of Co3O4, resulting in a diminished promotional effect compared to PdO.


2020 ◽  
pp. 1-26
Author(s):  
Suresh Thapa ◽  
Rajendra Paudel ◽  
Miles D. Blanchet ◽  
Patrick T. Gemperline ◽  
Ryan B. Comes

Abstract


2015 ◽  
Vol 22 (3) ◽  
pp. 736-744 ◽  
Author(s):  
Jocenir Boita ◽  
Marcus Vinicius Castegnaro ◽  
Maria do Carmo Martins Alves ◽  
Jonder Morais

In situtime-resolved X-ray absorption spectroscopy (XAS) measurements collected at the PtL3-edge during the synthesis of Pt nanoparticles (NPs) in aqueous solution are reported. A specially designed dispenser–reactor apparatus allowed for monitoring changes in the XAS spectra from the earliest moments of Pt ions in solution until the formation of metallic nanoparticles with a mean diameter of 4.9 ± 1.1 nm. By monitoring the changes in the local chemical environment of the Pt atoms in real time, it was possible to observe that the NPs formation kinetics involved two stages: a reduction-nucleation burst followed by a slow growth and stabilization of NPs. Subsequently, the synthesized Pt NPs were supported on activated carbon and characterized by synchrotron-radiation-excited X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS). The supported Pt NPs remained in the metallic chemical state and with a reduced size, presenting slight lattice parameter contraction in comparison with the bulk Pt values.


2020 ◽  
Vol 13 (07) ◽  
pp. 2050032
Author(s):  
Qing Huang ◽  
Guojin Zheng ◽  
Tian Wu

The electro-deoxidation of Ta2O5 in molten CaCl2 under N2 atmosphere is a facile way for the in situ surface nitridation of Ta particles. The cell voltage and electrolysis time of Ta2O5 are rationalized to realize the in situ surface nitridation of Ta. All the characterization results including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and elements mapping as well as X-ray photoelectron spectroscopy (XPS) confirm the formation of Ta2N layers on the surface of Ta particles, with the thickness of 3–4[Formula: see text]nm. This method provides a strategy for the facile in situ surface nitridation with N2 as the nitrogen source for the fabrication of core-shell structured catalysts.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 480
Author(s):  
Imane Daou ◽  
Gisèle Lecomte-Nana ◽  
Nicolas Tessier-Doyen ◽  
Claire Peyratout ◽  
Maurice Gonon ◽  
...  

Textured kaolinite and halloysite-based materials were shaped by tape casting in order to promote the alignment of clay particles along the tape casting direction and to investigate the structure evolution of these phyllosilicates during the dehydroxylation process. The crystallinity indexes HI and R2 of the starting kaolins (KRG and KCS) were determined and appeared close to values found for the well-ordered reference kaolin KGa-1b. The halloysite clay exhibited trimodal grain size distribution and tended to be less textured than KRG and KCS according to the (002) pole figures performed on green tapes. The constant heating rate derived kinetic parameters matched the expected range. We followed the dehydroxylation of kaolinite and halloysite through in situ high-temperature X-ray diffraction measurements at the ESRF synchrotron radiation source on the D2AM beamline. The dehydroxylation of these kaolinite and halloysite occurred between 425 °C and 675 °C for KRG and KCS and from 500 °C to 650 °C for halloysite. In addition, the evolution of the basal distance of kaolinite regarding the heat treatment temperature confirmed that the dehydroxylation process occurred in three steps: delamination, dehydroxylation, and formation of metakaolinite. The calculated coefficient of thermal expansion (CTE) along the c axe values were close to 17 × 10−6 °C−1 for kaolinite (KCS and KRG) and 14 × 10−6 °C−1 for halloysite.


NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2050058
Author(s):  
Yuhua Huang ◽  
Weiwei Li ◽  
Bingchu Mei ◽  
Yu Yang ◽  
Zuodong Liu

In this paper, the effects of etching temperature and concentrations of hydrochloric acid (HCl) on the exfoliating process and the electrochemical performance of LIBs were systematically explored. The transformation from Ti3AlC2 to Ti3C2 was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The suitable conditions of preparing Ti3C2 MXene though HCl and lithium fluoride (LiF) were obtained. Besides, the in-situ oxidation conditions of Ti3C2 during the etching process were studied. The TiO2/Ti3C2 was beneficial to improve the specific capacity from 125[Formula: see text]mAh[Formula: see text]g[Formula: see text] to 150[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 1 C.


2020 ◽  
Vol 92 (5) ◽  
pp. 733-749 ◽  
Author(s):  
Sung-Fu Hung

AbstractElectrocatalysis offers an alternative solution for the energy crisis because it lowers the activation energy of reaction to produce economic fuels more accessible. Non-noble electrocatalysts have shown their capabilities to practical catalytic applications as compared to noble ones, whose scarcity and high price limit the development. However, the puzzling catalytic processes in non-noble electrocatalysts hinder their advancement. In-situ techniques allow us to unveil the mystery of electrocatalysis and boost the catalytic performances. Recently, various in-situ X-ray techniques have been rapidly developed, so that the whole picture of electrocatalysis becomes clear and explicit. In this review, the in-situ X-ray techniques exploring the structural evolution and chemical-state variation during electrocatalysis are summarized for mainly oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and carbon dioxide reduction reaction (CO2RR). These approaches include X-ray Absorption Spectroscopy (XAS), X-ray diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The information seized from these in-situ X-ray techniques can effectively decipher the electrocatalysis and thus provide promising strategies for advancing the electrocatalysts. It is expected that this review could be conducive to understanding these in-situ X-ray approaches and, accordingly, the catalytic mechanism to better the electrocatalysis.


Author(s):  
Congming Tang ◽  
Juan Huang ◽  
Dong Zhang ◽  
Qingqing Jiang ◽  
Guilin Zhou

Abstract The mesoporous Ni/KIT-6 catalysts with different composition were prepared by altering reduction temperatures. In addition, their physicochemical properties were characterized by X-ray diffraction, in-situ X-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller techniques. The results shown that the specific surface area, composition and metallic Ni crystallinity of the Ni/KIT-6 catalyst were significantly affected by reduction temperatures. The catalytic performances of the prepared Ni/KIT-6 catalysts were evaluated via the CO2 reforming of CH4 into syngas and followed the order: RT0 < RT250 < RT300 < RT350 < RT400 < RT450 ≈ RT500. The specific surface area, pore volume, pore diameter, and Ni0 content of the most representative RT450 catalyst among of them were 646.7 m2 g−1, 0.92 cm3 g−1, 6.5 nm, and 30.9%, respectively. The CH4 and CO2 conversions of RT450 catalyst reached to 69.0 and 39.4% under a reaction temperature of 600 °C, respectively. The CO selectivity was greater than 49% and the RT450 catalyst had good stability.


Sign in / Sign up

Export Citation Format

Share Document