scholarly journals Flow characteristics of elastically mounted slit cylinder at sub-critical Reynolds number

2021 ◽  
Vol 33 (12) ◽  
pp. 123612
Author(s):  
Mayank Verma ◽  
Alok Mishra ◽  
Ashoke De
Author(s):  
Daniel Torgerson ◽  
Rahul Kolekar ◽  
Bruce Gale ◽  
Tim Ameel

Xurography is a novel manufacturing process for microfluidic systems, providing rapid prototyping capability at low cost compared to traditional microfabrication technologies. An experimental study of flow characteristics in rectangular xurographic microchannels is reported. Mean microchannel depth, defined by the thickness of the double-sided adhesive kapton tape that forms the channel pattern, is 105–110 μm. The microchannels are capped with glass and mechanically reinforced to withstand the high operating pressures that accompany high Reynolds number Re flow (250–3500). Channel aspect ratios range from 0.45 to 0.074. Width and length measurements are performed using optical microscopy. Microchannel height is measured using a unique nondestructive laser interferometry technique, capable of accurate measurement of the enclosed, compressed microchannels. Data are reported for friction factor, critical Reynolds number, and minor losses in expansions, contractions, and 90° miter bends. Expansion and contraction area ratios are 2, 3, and 5. The experimental Poissuille number in laminar flow for all aspect ratios is in good agreement with theoretical values. Critical Reynolds number ranges from 1800 to 2300, and is found to be dependent on channel defects, such as adhesive droplets and edge imperfections, inherent to xurography. Expansion and contraction losses decrease gradually with increasing Re in the range 250–4000 and increase for decreasing area ratio. Loss coefficients in the 90° miter bends increase with modified aspect ratio and are nearly invariant for 1200 < Re < 2100. Loss coefficients increase nearly linearly with Re for Re < 1200 and decrease significantly for Re greater than the critical Reynolds number.


2005 ◽  
Author(s):  
Terukazu Ota ◽  
Seijiro Takahashi ◽  
Hiroyuki Yoshikawa

Experimental investigations of the flow around an elliptic cylinder of axis ratio 1:3 were carried out for several angles of attack in a wide range of Reynolds number. The flow characteristics were studied by measuring the fluid forces and the surface pressure. In the critical Reynolds number regime, a discontinuous change of flow state was observed. This change was accompanied by the remarkable hysteresis phenomenon. Details of this hysteresis process are described in the paper.


2002 ◽  
Vol 458 ◽  
pp. 35-73 ◽  
Author(s):  
CH. NIENHÜSER ◽  
H. C. KUHLMANN

The thermocapillary flow in liquid bridges is investigated numerically. In the limit of large mean surface tension the free-surface shape is independent of the flow and temperature fields and depends only on the volume of liquid and the hydrostatic pressure difference. When gravity acts parallel to the axis of the liquid bridge the shape is axisymmetric. A differential heating of the bounding circular disks then causes a steady two-dimensional thermocapillary flow which is calculated by a finite-difference method on body-fitted coordinates. The linear-stability problem for the basic flow is solved using azimuthal normal modes computed with the same discretization method. The dependence of the critical Reynolds number on the volume fraction, gravity level, Prandtl number, and aspect ratio is explained by analysing the energy budgets of the neutral modes. For small Prandtl numbers (Pr = 0.02) the critical Reynolds number exhibits a smooth minimum near volume fractions which approximately correspond to the volume of a cylindrical bridge. When the Prandtl number is large (Pr = 4) the intersection of two neutral curves results in a sharp peak of the critical Reynolds number. Since the instabilities for low and high Prandtl numbers are markedly different, the influence of gravity leads to a distinctly different behaviour. While the hydrostatic shape of the bridge is the most important effect of gravity on the critical point for low-Prandtl-number flows, buoyancy is the dominating factor for the stability of the flow in a gravity field when the Prandtl number is high.


Author(s):  
Jian Pu ◽  
Zhaoqing Ke ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Hongde You

This paper presents an experimental investigation on the characteristics of the fluid flow within an entire coolant channel of a low pressure (LP) turbine blade. The serpentine channel, which keeps realistic blade geometry, consists of three passes connected by a 180° sharp bend and a semi-round bend, 2 tip exits and 25 trailing edge exits. The mean velocity fields within several typical cross sections were captured using a particle image velocimetry (PIV) system. Pressure and flow rate at each exit were determined through the measurements of local static pressure and volume flow rate. To optimize the design of LP turbine blade coolant channels, the effect of tip ejection ratio (ER) from 180° sharp bend on the flow characteristics in the coolant channel were experimentally investigated at a series of inlet Reynolds numbers from 25,000 to 50,000. A complex flow pattern, which is different from the previous investigations conducted by a simplified square or rectangular two-pass U-channel, is exhibited from the PIV results. This experimental investigation indicated that: a) in the main flow direction, the regions of separation bubble and flow impingement increase in size with a decrease of the ER; b) the shape, intensity and position of the secondary vortices are changed by the ER; c) the mass flow ratio of each exit to inlet is not sensitive to the inlet Reynolds number; d) the increase of the ER reduces the mass flow ratio through each trailing edge exit to the extent of about 23–28% of the ER = 0 reference under the condition that the tip exit located at 180° bend is full open; e) the pressure drop through the entire coolant channel decreases with an increase in the ER and inlet Reynolds number, and a reduction about 35–40% of the non-dimensional pressure drop is observed at different inlet Reynolds numbers, under the condition that the tip exit located at 180° bend is full open.


Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


2018 ◽  
Vol 916 ◽  
pp. 221-225
Author(s):  
Ji Zu Lv ◽  
Liang Yu Li ◽  
Cheng Zhi Hu ◽  
Min Li Bai ◽  
Sheng Nan Chang ◽  
...  

Nanofluids is an innovative study of nanotechnology applied to the traditional field of thermal engineering. It refers to the metal or non-metallic nanopowder was dispersed into water, alcohol, oil and other traditional heat transfer medium, to prepared as a new heat transfer medium with high thermal conductivity. The role of nanofluids in strengthening heat transfer has been confirmed by a large number of experimental studies. Its heat transfer mechanism is mainly divided into two aspects. On the one hand, the addition of nanoparticles enhances the thermal conductivity. On the other hand, due to the interaction between the nanoparticles and base fluid causing the changes in the flow characteristics, which is also the main factor affecting the heat transfer of nanofluids. Therefore, a intensive study on the flow characteristics of nanofluids will make the study of heat transfer more meaningful. In this experiment, the flow characteristics of SiO2-water nanofluids in two-dimensional backward step flow are quantitatively studied by PIV. The results show that under the same Reynolds number, the turbulence of nanofluids is larger than that of pure water. With the increase of nanofluids volume fraction, the flow characteristics are constantly changing. The quantitative analysis proved that the nanofluids disturbance was enhanced compared with the base liquid, which resulting in the heat transfer enhancement.


2001 ◽  
Author(s):  
Hidesada Kanda

Abstract For plane Poiseuille flow, results of previous investigations were studied, focusing on experimental data on the critical Reynolds number, the entrance length, and the transition length. Consequently, concerning the natural transition, it was confirmed from the experimental data that (i) the transition occurs in the entrance region, (ii) the critical Reynolds number increases as the contraction ratio in the inlet section increases, and (iii) the minimum critical Reynolds number is obtained when the contraction ratio is the smallest or one, and there is no-shaped entrance or straight parallel plates. Its value exists in the neighborhood of 1300, based on the channel height and the average velocity. Although, for Hagen-Poiseuille flow, the minimum critical Reynolds number is approximately 2000, based on the pipe diameter and the average velocity, there seems to be no significant difference in the transition from laminar to turbulent flow between Hagen-Poiseuille flow and plane Poiseuille flow.


2000 ◽  
Vol 122 (3) ◽  
pp. 522-532 ◽  
Author(s):  
H. Lee ◽  
S.-H. Kang

Transition characteristics of a boundary layer on a NACA0012 airfoil are investigated by measuring unsteady velocity using hot wire anemometry. The airfoil is installed in the incoming wake generated by an airfoil aligned in tandem with zero angle of attack. Reynolds number based on the airfoil chord varies from 2.0×105 to 6.0×105; distance between two airfoils varies from 0.25 to 1.0 of the chord length. To measure skin friction coefficient identifying the transition onset and completion, an extended wall law is devised to accommodate transitional flows with pressure gradient and nonuniform inflows. Variations of the skin friction are quite similar to that of the flat plate boundary layer in the uniform turbulent inflow of high intensity. Measured velocity profiles are coincident with families generated by the modified wall law in the range up to y+=40. Turbulence intensity of the incoming wake shifts the onset location of transition upstream. The transitional region becomes longer as the airfoils approach one another and the Reynolds number increases. The mean velocity profile gradually varies from a laminar to logarithmic one during the transition. The maximum values of rms velocity fluctuations are located near y+=15-20. A strong positive skewness of velocity fluctuation is observed at the onset of transition and the overall rms level of velocity fluctuation reaches 3.0–3.5 in wall units. The database obtained will be useful in developing and evaluating turbulence models and computational schemes for transitional boundary layer. [S0098-2202(00)01603-5]


1978 ◽  
Vol 100 (3) ◽  
pp. 299-307 ◽  
Author(s):  
S. H. Alvi ◽  
K. Sridharan ◽  
N. S. Lakshmana Rao

Loss characteristics of sharp-edged orifices, quadrant-edged orifices for varying edge radii, and nozzles are studied for Reynolds numbers less than 10,000 for β ratios from 0.2 to 0.8. The results may be reliably extrapolated to higher Reynolds numbers. Presentation of losses as a percentage of meter pressure differential shows that the flow can be identified into fully laminar regime, critical Reynolds number regime, relaminarization regime, and turbulent flow regime. An integrated picture of variation of parameters such as discharge coefficient, loss coefficient, settling length, pressure recovery length, and center line velocity confirms this classification.


Sign in / Sign up

Export Citation Format

Share Document