Hydrodynamic analysis of fish schools arranged in the vertical plane

2021 ◽  
Vol 33 (12) ◽  
pp. 121905
Author(s):  
Xiaohu Li ◽  
Jiayang Gu ◽  
Zhen Su ◽  
Zhenqiu Yao
Author(s):  
D. S. Bhaskara Rao ◽  
R. Panneer Selvam ◽  
Nagan Srinivasan

Tension Leg Platforms (TLPs) are one of the best options for offshore industry in deep waters due to proven motion response characteristics. These are water depth sensitive structures and the motion responses in vertical plane motions (heave, roll and pitch) are critical for a TLP. Tension Based TLP (TBTLP) is a new concept and finds application in much deeper waters. A provision of a tension base at mid-depth results in an economical design of TLP. In fact, the TLP installed at a certain depth without any modifications can be made to be deployed in much deeper water depths by means of a tension base. In this paper, the concept of TBTLP is highlighted and hydrodynamic analysis of the chosen platform has been carried out using ANSYS AQWA package. The motion responses in terms of Response Amplitude Operators (RAOs) of TBTLP with one Tension Base in surge, heave and pitch have been obtained and compared with a TLP without a tension base.


Author(s):  
A. V. Crewe ◽  
M. Isaacson ◽  
D. Johnson

A double focusing magnetic spectrometer has been constructed for use with a field emission electron gun scanning microscope in order to study the electron energy loss mechanism in thin specimens. It is of the uniform field sector type with curved pole pieces. The shape of the pole pieces is determined by requiring that all particles be focused to a point at the image slit (point 1). The resultant shape gives perfect focusing in the median plane (Fig. 1) and first order focusing in the vertical plane (Fig. 2).


Author(s):  
Nancy R. Wallace ◽  
Craig C. Freudenrich ◽  
Karl Wilbur ◽  
Peter Ingram ◽  
Ann LeFurgey

The morphology of balanomorph barnacles during metamorphosis from the cyprid larval stage to the juvenile has been examined by light microscopy and scanning electron microscopy (SEM). The free-swimming cyprid attaches to a substrate, rotates 90° in the vertical plane, molts, and assumes the adult shape. The resulting metamorph is clad in soft cuticle and has an adult-like appearance with a mantle cavity, thorax with cirri, and incipient shell plates. At some time during the development from cyprid to juvenile, the barnacle begins to mineralize its shell, but it is not known whether calcification occurs before, during, or after ecdysis. To examine this issue, electron probe x-ray microanalysis (EPXMA) was used to detect calcium in cyprids and juveniles at various times during metamorphosis.Laboratory-raised, free-swimming cyprid larvae were allowed to settle on plastic coverslips in culture dishes of seawater. The cyprids were observed with a dissecting microscope, cryopreserved in liquid nitrogen-cooled liquid propane at various times (0-24 h) during metamorphosis, freeze dried, rotary carbon-coated, and examined with scanning electron microscopy (SEM). EPXMA dot maps were obtained in parallel for qualitative assessment of calcium and other elements in the carapace, wall, and opercular plates.


2014 ◽  
Vol 1 (2) ◽  
pp. 52-60
Author(s):  
V. Bulgakov ◽  
V. Adamchuk ◽  
H. Kaletnyk

The new design mathematical model of the sugar beet roots vibration digging-out process with the plowshare vibration digging working part has been created. In this case the sugar beet root is simulated as a solid body , while the plowshare vibration digging working part accomplishes fl uctuations in the longitudinal - vertical plane with the given amplitude and frequency in the process of work . The aim of the current research has been to determine the dependences between the design and kinematic parameters of the sugar beet roots vibra- tion digging-out technological process from soil , which provide the ir non-damage. Methods . For the aim ac- complishment, the methods of design mathematical models constructing based on the classical laws of me- chanics are applied. The solution of the obtained differential equations is accomplished with the PC involve- ment. Results . The differential equations of the sugar beet root’s motion in course of the vibration digging-out have been comprised . They allow to determine the admissible velocity of the vibration digging working part’s forward motion depending on the angular parameters of the latter. In the result of the computational simula- tion i.e., the solution of the obtained analytical dependence by PC, the graphic dependences of the admissible velocity of plowshare v ibration digging working part’s forward motion providing the extraction of the sugar beet root from soil without the breaking-off of its tail section have been determined. Conclusions . Due to the performed analytical research , it has been established that γ = 13 ... 16 ° , β = 20 ... 30 ° should be considered as the most reasonable values of γ and β angles of the vibration digging working part providing both its forward motion optimum speed and sugar beet root digging-out from the soil without damage . On the ground of the data obtained from the analytical rese arch, the new vibration digging working parts for the sugar beet roots have been designed; also the patents of Ukraine for the inventions have been obtained for them.


2019 ◽  
Vol 6 ◽  
pp. 50-53
Author(s):  
A.R. Davletova ◽  
◽  
A.I. Fedorov ◽  
G.A. Shchutsky ◽  
◽  
...  

Author(s):  
Dmitriy Antipin ◽  
Vladimir Vorobev ◽  
Denis Bondarenko ◽  
Gennadiy Petrov

The analysis of the design features of the bogie of the TEM23 shunting diesel locomotive is carried out. In the process of analysis, the directions of its improvement are determined. It is proposed to rotate the bogie frame in the vertical plane by reducing the body supports to two and using a pivot with low lowering, equip the bogies with pneumatic spring suspension in the form of two corrugations installed in series with shortened suspension springs. The proposed options for improving the undercarriage of a diesel locomotive will increase the competitiveness of products and reduce costs


2020 ◽  
Vol 2020 (9) ◽  
pp. 35-46
Author(s):  
Aleksandr Skachkov ◽  
Viktor Vasilevskiy ◽  
Aleksey Yuhnevskiy

The consideration of existing methods for a modal analysis has shown a possibility for the lowest frequency definition of bending vibrations in a coach car body in a vertical plane based on an indirect method reduced to the assessment of the bending stiffness of the one-dimensional model as a Bernoulli-Euler beam with fragment-constant parameters. The assessment mentioned can be obtained by means of the comparison of model deflections (rated) and a prototype (measured experimentally upon a natural body) with the use of the least-squares method that results in the necessity of the solution of the multi-dimensional problem with the reverse coefficient. The introduction of the hypothesis on ratability of real bending stiffness of the prototype and easily calculated geometrical stiffness of a model reduces a multi-dimensional problem incorrect according to Adamar to the simplest search of the extremum of one variable function. The procedure offered for the indirect assessment of bending stiffness was checked through the solution of model problems. The values obtained are offered to use for the assessment of the lowest frequency of bending vibrations with the aid of Ritz and Grammel methods. In case of rigid poles it results in formulae for frequencies into which there are included directly the experimental values of deflections.


Author(s):  
Daniel Nuez ◽  
Phoumra Tan

Abstract Conductive anodic filament (CAF) formation is a mechanism caused by an electrochemical migration of metals from a metal trace in ICs or in PCBs. This is commonly caused by the moisture build-up in the affected metal terminals in an IC package or PC board caused by critical temperature, high humidity and high voltage gradients conditions. This phenomenon is known to have caused catastrophic field failures on various OEMs electronic components in the past [1,7]. Most published articles on CAF described the formation of the filament in a lateral formation through the glass fiber interfaces between two adjacent metal planes [1-6, 8-12]. One common example is the CAF formation seen between PTH (Plated through Hole) in the laminated substrate with two different potentials causing shorts [1-6, 8-12]. In this paper, the Cu filament grows in a vertical fashion (z-axis formation) creating a vertical plane shorts between the upper and lower metal terminals in a laminated IC package substrate. The copper growth migration does not follow the fiber strands laterally or vertically through them. Instead, it grows through the stress created gaps between the impregnated carbon epoxy fillers from the upper metal trace to the lower metal trace with two different potentials, between the glass fibers. This vertical CAF mechanism creates a low resistive short that was sometimes found to be intermittent in nature. This paper presents some successful failure analysis approaches used to isolate and detect the failure locations for this type of failing devices. This paper also exposes the unique physical appearance of the vertical CAF formation.


Sign in / Sign up

Export Citation Format

Share Document