scholarly journals Aftereffect of High-Speed Motion

Perception ◽  
1998 ◽  
Vol 27 (9) ◽  
pp. 1055-1066 ◽  
Author(s):  
Frans A J Verstraten ◽  
Maarten J van der Smagt ◽  
Wim A van de Grind

A visual illusion known as the motion aftereffect is considered to be the perceptual manifestation of motion sensors that are recovering from adaptation. This aftereffect can be obtained for a specific range of adaptation speeds with its magnitude generally peaking for speeds around 3 deg s−1. The classic motion aftereffect is usually measured with a static test pattern. Here, we measured the magnitude of the motion aftereffect for a large range of velocities covering also higher speeds, using both static and dynamic test patterns. The results suggest that at least two (sub)populations of motion-sensitive neurons underlie these motion aftereffects. One population shows itself under static test conditions and is dominant for low adaptation speeds, and the other is prevalent under dynamic test conditions after adaptation to high speeds. The dynamic motion aftereffect can be perceived for adaptation speeds up to three times as fast as the static motion aftereffect. We tested predictions that follow from the hypothesised division in neuronal substrates. We found that for exactly the same adaptation conditions (oppositely directed transparent motion with different speeds), the aftereffect direction differs by 180° depending on the test pattern. The motion aftereffect is opposite to the pattern moving at low speed when the test pattern is static, and opposite to the high-speed pattern for a dynamic test pattern. The determining factor is the combination of adaptation speed and type of test pattern.

Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 75-75
Author(s):  
H Ashida ◽  
F A J Verstraten ◽  
S Nishida

The motion aftereffect (MAE) measured with a dynamic test pattern (eg a counterphase-flickering grating) is distinguishable by a number of properties from the classical MAE obtained with a static test pattern. For a dynamic MAE, however, it is not sufficient simply to introduce dynamic properties into the test pattern. In two experiments we attempted to determine the transition point in the temporal-frequency domain at which a dynamic MAE becomes distinguishable from the static MAE. First, we examined the interocular transfer (IOT) of the MAE with conventional first-order (luminance) gratings. The amount of IOT increased with temporal frequency, and was almost complete at 1 Hz and above. In addition, the IOT of a dynamic MAE shows a drastic reduction in the peripheral visual field, possibly reflecting difficulties in feature tracking or the loss of involuntary attention. Second, we examined the MAE with second-order motion as the adaptation stimulus (contrast modulation of two-dimensional static noise). Under these conditions, similar results were obtained for first-order and second-order test gratings: MAE was not observed at low temporal frequencies and a substantial MAE was observed only at 1 Hz and above. The results agree with recent findings which showed a gradual loss of spatial-frequency selectivity with increasing temporal frequency of the test pattern (Mareschal et al, 1997 Vision Research37 1755 – 1759). The present results support the idea that two mechanisms underlie the different kinds of MAE: a low-level mechanism responsible for the MAE observed at low temporal frequencies, and a high-level mechanism operating predominantly at high temporal frequencies with a transition point at about 1 Hz.


Perception ◽  
1993 ◽  
Vol 22 (7) ◽  
pp. 771-784 ◽  
Author(s):  
Noud A W H van Kruysbergen ◽  
Charles M M de Weert

Research concerning the perception of apparent motion is not easy to conduct: it is hard to obtain quantitative results that can be easily interpreted. A solution to this problem is the use of motion aftereffects (MAEs). Adapting subjects to a specific type of motion leads to apparent motion in the opposite direction when the stimulus is removed. However, subjects are aware of the change in stimulus conditions. A new dynamic test stimulus is proposed in order to avoid artefacts introduced by the awareness of the conditions by the subject. A model, derived from earlier observations, is described which includes contributions from monocular and binocular systems. Results from an experiment in which the dynamic test stimulus was used show that they do not necessarily reproduce the results obtained with a static test stimulus. Central monocular systems are added to the model to account for this discrepancy. The ‘pooling hypothesis’, which states that the MAE is a weighted mean of the processes involved, permits the estimation of the weights of the individual subsystems. The results of the experiments are explained in terms of this hypothesis by the new model.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Alloy Digest ◽  
1980 ◽  
Vol 29 (8) ◽  

Abstract RED CUT COBALT steel is made by adding 5% cobalt to the conventional 18% tungsten -4% chromium-1% vanadium high-speed steel. Cobalt increases hot or red hardness and thus enables the tool to maintain a higher hardness at elevated temperatures. This steel is best adapted for hogging cuts or where the temperature of the cutting point of the tool in increased greatly. It is well adapted for tools to be used for reaming cast-iron engine cylinders, turning alloy steel or cast iron and cutting nonferrous alloys at high speeds. This datasheet provides information on composition, physical properties, and hardness as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-367. Producer or source: Teledyne Vasco.


Alloy Digest ◽  
1980 ◽  
Vol 29 (7) ◽  

Abstract CPM REX 25 is a super high-speed steel made without cobalt. It is comparable to AISI Type T15 cobalt-containing high-speed steel in response to heat treatment, properties, and tool performance. CPM REX 25 is recommended for machining operations requiring heavy cuts, high speeds and feeds, and difficult-to-machine materials of high hardness and abrasion resistance. Typical applications are boring tools, drills, gear cutters, punches, form tools, end mills and broaches. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: TS-365. Producer or source: Crucible Materials Corporation.


Perception ◽  
1986 ◽  
Vol 15 (5) ◽  
pp. 603-612 ◽  
Author(s):  
Michael J Wright

Adapting to a drifting grating (temporal frequency 4 Hz, contrast 0.4) in the periphery gave rise to a motion aftereffect (MAE) when the grating was stopped. A standard unadapted foveal grating was matched to the apparent velocity of the MAE, and the matching velocity was approximately constant regardless of the visual field position and spatial frequency of the adapting grating. On the other hand, when the MAE was measured by nulling with real motion of the test grating, nulling velocity was found to increase with eccentricity. The nulling velocity was constant when scaled to compensate for changes in the spatial ‘grain’ of the visual field. Thus apparent velocity of MAE is constant across the visual field, but requires a greater velocity of real motion to cancel it in the periphery. This confirms that the mechanism underlying MAE is spatially-scaled with eccentricity, but temporally homogeneous. A further indication of temporal homogeneity is that when MAE is tracked, by matching or by nulling, the time course of temporal decay of the aftereffect is similar for central and for peripheral stimuli.


Perception ◽  
1977 ◽  
Vol 6 (6) ◽  
pp. 719-725 ◽  
Author(s):  
Max J Keck ◽  
Benjamin Pentz

Short-term adaptation to moving sinusoidal gratings results in a motion aftereffect which decays in time. The time decay of the motion aftereffect has been measured psychophysically, and it is found to depend on (i) the spontaneous recovery from the adapted state, and (ii) the contrast of the test grating. We have measured the decays for various test conditions. An extrapolation of the measurements allows us to obtain a decay which represents the time course of the spontaneous recovery of the direction-sensitive mechanisms.


1948 ◽  
Vol 15 (3) ◽  
pp. 248-255
Author(s):  
E. T. Habib

Abstract In mechanical gages used to measure the pressure from an underwater explosion, small copper cylinders are compressed at high speeds. This paper describes the test apparatus designed for the dynamic calibration of these cylinders, presents the results obtained with this apparatus, and compares these results with those obtained by other experimenters.


Sign in / Sign up

Export Citation Format

Share Document