SHARED INFRASTRUCTURE: A COST-EFFECTIVE DEVELOPMENT STRATEGY FOR SMALLER FIELDS OFFSHORE AUSTRALIA?

2004 ◽  
Vol 44 (1) ◽  
pp. 569
Author(s):  
B.F. Ronalds

B.F. RonaldsFuture oil discoveries offshore Australia are unlikely to be large fields that can support the development of a one-off self-sufficient facility. Fixed platforms are generally only feasible in shallow water when the water depth (in metres) to well count ratio d/w The construction and ongoing re-use of a generic FPSO suited to Australasian field conditions might be of considerable assistance in monetising small oil fields in deeper water. Similarly, aptly located, designed and operated gas hubs could open up large areas for satellite gas development long into the future, aided by new technology to enable ultra-long tiebacks. Both approaches suggest the benefit of overlaying a regional perspective on the oil companies’ field-specific development philosophy.

2019 ◽  
Vol 9 (22) ◽  
pp. 4957 ◽  
Author(s):  
Xianqing Liu ◽  
Puyang Zhang ◽  
Mingjie Zhao ◽  
Hongyan Ding ◽  
Conghuan Le

Large-diameter multi-bucket foundation is well suited for offshore wind turbines at deeper water than 20 m. Air floating transportation is one of the key technologies for the cost-effective development of bucket foundation. To predict the dynamic behavior of large-diameter tripod bucket foundation (LDTBF) supported by an air cushion and a water plug inside every bucket in waves, three 1/25-scale physical model tests with different bucket spacing were conducted in waves; detailed prototype foundation models were established using a hydrodynamic software MOSES with a draft of 4.0 m, 4.5 m, and 5.0 m and with a water depth of 10.0 m, 11.25 m, and 12.5 m. The numerical and experimental results are consistent for heaving motion, while exhibiting favorable agreement for pitching motion. The results show that the resonant periods for heaving motion increased with increasing draft and water depth. The maximum amplitude for heaving motion first decreased and then increased with the increase of water depth and spacing between the buckets. The maximum amplitude for pitching motion first decreased and then increased with increasing water depth but decreased with increasing spacing between the buckets. The wider the spacing between the bucket foundations, the larger the heave response amplitude operators (RAOs). Simply improving the pitch RAOs by increasing the spacing between bucket foundations is limited and negatively affects motion performance during the transportation of LDTBF.


Author(s):  
Chuku Chibuzor H. ◽  
Odigi, Minapuye I. ◽  
Ibe Chidi A. ◽  
Ideozu Richmond U.

The investigation reveals the stratigraphic sub-division of the site within the depth explored. Basically, though at some depths the lithology is similar, they are different sediments as revealed by the laboratory tests. Essentially, the site consists of silty clay on the surface that is soft in consistency and weak in shear strength. However, the consistency and the strength of the clay improve down depth from 14.50m where it becomes soft-firm. At 30.00 m depth, the clay becomes very firm as some shell fragments (mostly calcareous shells of gastropods and mollusks) occurred within it. Below this clay unit at about 45.00 m depth, a dense to very dense Sand unit of about 10.00m -12.00m thick occurs. The sand is poorly to moderately graded.  Below this sand unit at about 57.0m depth, another firm clay unit occurs. This clay unit becomes intercalated with sand at 60.50m and continues to about 62.50m where it grades into firm clay and continues to the termination depth at 66.00m. Based on the findings, a number of recommendations have been formulated for the safe and cost effective development of this Oil Field.


2014 ◽  
Vol 4 (1) ◽  
pp. 23-29
Author(s):  
Constance Hilory Tomberlin

There are a multitude of reasons that a teletinnitus program can be beneficial, not only to the patients, but also within the hospital and audiology department. The ability to use technology for the purpose of tinnitus management allows for improved appointment access for all patients, especially those who live at a distance, has been shown to be more cost effective when the patients travel is otherwise monetarily compensated, and allows for multiple patient's to be seen in the same time slots, allowing for greater access to the clinic for the patients wishing to be seen in-house. There is also the patient's excitement in being part of a new technology-based program. The Gulf Coast Veterans Health Care System (GCVHCS) saw the potential benefits of incorporating a teletinnitus program and began implementation in 2013. There were a few hurdles to work through during the beginning organizational process and the initial execution of the program. Since the establishment of the Teletinnitus program, the GCVHCS has seen an enhancement in patient care, reduction in travel compensation, improvement in clinic utilization, clinic availability, the genuine excitement of the use of a new healthcare media amongst staff and patients, and overall patient satisfaction.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Corrie Grosse

From 2011 to 2014 fossil fuel corporations trucked tar sands processing machinery along rural Idaho highways. The machinery was bound for the world's largest deposits of tar or oil sands, a heavy crude oil substance called bitumen, located in the western Canadian province of Alberta. These loads of machinery, what became known as megaloads, encountered much resistance. Throughout Idaho and the surrounding region, a network organized opposition. Neighbors, grassroots organizations, nonprofits, and the Nez Perce and other tribes all collaborated. They held information sessions, protested, waged legal battles, monitored the loads, and blockaded highways. What oil companies hoped would be a cost-effective solution for transporting their megaloads became a David versus Goliath, Coyote versus the Monster—to reference the Nez Perce creation story—struggle to protect rural and indigenous ways of life and sovereignty, and the planet.


2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Murugan Ramasamy ◽  
Mohammed Abdul Hannan ◽  
Yaseen Adnan Ahmed ◽  
Arun Kr Dev

Offshore vessels (OVs) often require precise station-keeping and some vessels, for example, vessels involved in geotechnical drilling, generally use Spread Mooring (SM) or Dynamic Positioning (DP) systems. Most of these vessels are equipped with both systems to cover all ranges of water depths. However, determining which system to use for a particular operational scenario depends on many factors and requires significant balancing in terms of cost-benefit. Therefore, this research aims to develop a platform that will determine the cost factors for both the SM and DP station-keeping systems. Operational information and cost data are collected for several field operations, and Artificial Neural Networks (ANN) are trained using those data samples. After that, the trained ANN is used to predict the components of cost for any given environmental situation, fieldwork duration and water depth. Later, the total cost is investigated against water depth for both DP and SM systems to determine the most cost-effective option. The results are validated using two operational scenarios for a specific geotechnical vessel. This decision-making algorithm can be further developed by adding up more operational data for various vessels and can be applied in the development of sustainable decision-making business models for OVs operators.


2013 ◽  
Vol 32 (2) ◽  
pp. 152-157
Author(s):  
Nora Fawzi ◽  
Ramachandran Vasudevan ◽  
Patimah Ismail ◽  
Mazeni Alwi ◽  
Ahmad Fazli Abdul Aziz ◽  
...  

Summary Background: Congenital heart disease (CHD) is the most common birth defect; however, the underlying etiology is unrecognized in the majority of cases. GATA-binding protein 4 (GATA4), a cardiac transcription factor gene, has a crucial role in the cardiogenesis process; hence, a number of heterozygote sequence variations were identified as a cause of CHD. G296S heterozygote variant is the most frequently reported GATA4 gene sequence alteration. This study aims to investigate the role of G296S variant of the GATA4 gene in Malaysian CHD subjects. Methods: We have investigated 86 Malaysian CHD subjects with cardiac septation defects for the presence of the GATA4 gene heterozygote variant (G296S) by the new technology of high resolution melting (HRM) analysis. Results: Genotyping of G296S (c.886G>A) by HRM analysis shows that all the sample genotypes were of the wild GG type genotype and the heterozygote mutant GA genotype was totally absent from this study cohort. Conclusions: The results of our study showed that the G296S variant of the GATA4 gene was not associated with the development of CHD in Malaysian subjects. The use of HRM analysis proved a cost-effective, high-throughput, specific and sensitive genotyping technique which eliminates the need for unnecessary sequencing.


2021 ◽  
Author(s):  
Mohd Hafizi Ariffin ◽  
Muhammad Idraki M Khalil ◽  
Abdullah M Razali ◽  
M Iman Mostaffa

Abstract Most of the oil fields in Sarawak has already producing more than 30 years. When the fields are this old, the team is most certainly facing a lot of problems with aging equipment and facilities. Furthermore, the initial stage of platform installation was not designed to accommodate a large space for an artificial lift system. Most of these fields were designed with gas lift compressors, but because of the space limitation, the platforms can only accommodate a limited gas lift compressor capacity due to space constraints. Furthermore, in recent years, some of the fields just started with their secondary recovery i.e. water, gas injection where the fluid gradient became heavier due to GOR drop or water cut increases. With these limitations and issues, the team needs to be creative in order to prolong the fields’ life with various artificial lift. In order to push the limits, the team begins to improve gas lift distribution among gas lifted wells in the field. This is the cheapest option. Network model recommends the best distribution for each gas lifted wells. Gas lifted wells performance highly dependent on fluid weight, compressor pressure, and reservoir pressure. The change of these parameters will impact the production of these wells. Rigorous and prudent data acquisitions are important to predict performance. Some fields are equipped with pressure downhole gauges, wellhead pressure transmitters, and compressor pressure transmitters. The data collected is continuous and good enough to be used for analysis. Instead of depending on compressor capacity, a high-pressure gas well is a good option for gas lift supply. The issues are to find gas well with enough pressure and sustainability. Usually, this was done by sacrificing several barrels of oil to extract the gas. Electrical Submersible Pump (ESP) is a more expensive option compared to a gas lift method. The reason is most of these fields are not designed to accommodate ESP electricity and space requirements. Some equipment needs to be improved before ESP installation. Because of this, the team were considering new technology such as Thru Tubing Electrical Submersible Pump (TTESP) for a cheaper option. With the study and implementation as per above, the fields able to prolong its production until the end of Production Sharing Contract (PSC). This proactive approach has maintained the fields’ production with The paper seeks to present on the challenges, root cause analysis and the lessons learned from the subsequent improvement activities. The lessons learned will be applicable to oil fields with similar situations to further improve the fields’ production.


2021 ◽  
Author(s):  
Li Zhang ◽  
Lei Xing ◽  
Mingyu Dong ◽  
Weimin Chen

Abstract Articulated pusher barge vessel is a short-distance transport vessel with good economic performance and practicability, which is widely used in the Yangtze River of China. In this present work, the resistance performance of articulated pusher barge vessel in deep water and shallow water was studied by model tests in the towing tank and basin of Shanghai Ship and Shipping Research Institute. During the experimental investigation, the articulated pusher barge vessel was divided into three parts: the pusher, the barge and the articulated pusher barge system. Firstly, the deep water resistance performance of the articulated pusher barge system, barge and the pusher at design draught T was studied, then the water depth h was adjusted, and the shallow water resistance at h/T = 2.0, 1.5 and 1.2 was tested and studied respectively, and the difference between deep water resistance and shallow water resistance at design draught were compared. The results of model tests and analysis show that: 1) in the study of deep water resistance, the total resistance of the barge was larger than that of the articulated pusher barge system. 2) for the barge, the shallow water resistance increases about 0.4–0.7 times at h/T = 2.0, 0.5–1.1 times at h/T = 1.5, and 0.7–2.3 times at h/T = 1.2. 3) for the pusher, the shallow water resistance increases about 1.0–0.4 times at h/T = 2.7, 1.2–0.9 times at h/T = 2.0, and 1.7–2.4 times at h/T = 1.6. 4) for the articulated pusher barge system, the shallow water resistance increases about 0.2–0.3 times at h/T = 2.0, 0.5–1.3 times at h/T = 1.5, and 1.0–3.5 times at h/T = 1.2. Furthermore, the water depth Froude number Frh in shallow water was compared with the changing trend of resistance in shallow water.


2011 ◽  
Vol 2 (2) ◽  
pp. 320-333
Author(s):  
F. Van den Abeele ◽  
J. Vande Voorde

The worldwide demand for energy, and in particular fossil fuels, keeps pushing the boundaries of offshoreengineering. Oil and gas majors are conducting their exploration and production activities in remotelocations and water depths exceeding 3000 meters. Such challenging conditions call for enhancedengineering techniques to cope with the risks of collapse, fatigue and pressure containment.On the other hand, offshore structures in shallow water depth (up to 100 meter) require a different anddedicated approach. Such structures are less prone to unstable collapse, but are often subjected to higherflow velocities, induced by both tides and waves. In this paper, numerical tools and utilities to study thestability of offshore structures in shallow water depth are reviewed, and three case studies are provided.First, the Coupled Eulerian Lagrangian (CEL) approach is demonstrated to combine the effects of fluid flowon the structural response of offshore structures. This approach is used to predict fluid flow aroundsubmersible platforms and jack-up rigs.Then, a Computational Fluid Dynamics (CFD) analysis is performed to calculate the turbulent Von Karmanstreet in the wake of subsea structures. At higher Reynolds numbers, this turbulent flow can give rise tovortex shedding and hence cyclic loading. Fluid structure interaction is applied to investigate the dynamicsof submarine risers, and evaluate the susceptibility of vortex induced vibrations.As a third case study, a hydrodynamic analysis is conducted to assess the combined effects of steadycurrent and oscillatory wave-induced flow on submerged structures. At the end of this paper, such ananalysis is performed to calculate drag, lift and inertia forces on partially buried subsea pipelines.


2014 ◽  
Vol 30 (02) ◽  
pp. 66-78
Author(s):  
Mark Pavkov ◽  
Morabito Morabitob

Experiments were conducted at the U.S. Naval Academy's Hydromechanics Laboratory to determine the effect of finite water depth on the resistance, heave, and trim of two different trimaran models. The models were tested at the same length to water depth ratios over a range of Froude numbers in the displacement speed regime. The models were also towed in deep water for comparison. Additionally, the side hulls were adjusted to two different longitudinal positions to investigate possible differences resulting from position. Near critical speed, a large increase in resistance and sinkage was observed, consistent with observations of conventional displacement hulls. The data from the two models are scaled up to a notional 125-m length to illustrate the effects that would be observed for actual ships similar in size to the U.S. Navy's Independence Class Littoral Combat Ship. Faired plots are developed to allow for rapid estimation of shallow water effect on trimaran resistance and under keel clearance. An example is provided.


Sign in / Sign up

Export Citation Format

Share Document