scholarly journals Water Production Problem in Gas Reservoirs: Concepts, Challenges, and Practical Solutions

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ali Akbar Roozshenas ◽  
Hamed Hematpur ◽  
Reza Abdollahi ◽  
Hamid Esfandyari

Gas resources play a key role in nowadays energy supply and provide 24% of the diverse energy portfolio. Water encroachment is one of the main trapping mechanisms in gas reservoirs. It decreases recovery by reduction of reservoir life, limits productivity and efficiency of wells, and elevates safety risks in gas production. The lack of a comprehensive study about water production problems is the primary motivation for this study. Contrary to the serious concern over the standalone investigation of an actual water production case study, less concern is put to deal with the problem comprehensively through an investigation of all potential sources and mechanisms, required methods, and available techniques. This study presents the potential sources of the problem, methods to identify it, and approaches to address it. Firstly, possible sources are described. Secondly, the diagnostic techniques are expressed. Then, practical solutions used in actual cases to overcome problems are elaborated. The solutions include both well- and reservoir-oriented approaches. Finally, all proper strategies are summarized to tackle the water problems in gas fields. The current study comprehensively presents the available methods for water control problems in parallel with conceptual and qualitative comparison. The finding of this study can be very constructive for better understanding of water sources, available diagnostic tools, and solutions for controlling water production in gas reservoirs and, consequently, taking the best decision in real case studies before attempting many water shut-off approaches.

2011 ◽  
Vol 51 (1) ◽  
pp. 577
Author(s):  
Fadi Ali ◽  
Hassan Bahrami ◽  
Po Chu Byfield ◽  
Jijin Mathew

Water breakthrough and the flow of water towards the perforations of a producing well increase production operation costs and influence overall recovery efficiency. To control water production, a downhole water sink can be used in which a well is completed in both oil and water zones. Water is produced from an interval in water zone, which can result in the same pressure drop below water oil contact (WOC) as the pressure drop created by oil or gas production. This system can reduce water production through oil zone perforations. Water produced from water zone perforations can then be injected in deeper aquifers intervals. This technology can also be implemented in horizontal and multi-lateral wells to further increase hydrocarbon recovery with fewer water problems. This study examines the use of horizontal downhole water sink technology to increase oil recovery. Numerical simulation is performed to optimise oil production and water control in a multi-layered oil reservoir, by optimising the direction of drilling and the downhole water sink method. Different scenarios of drilling direction and horizontal down-hole water sink method are examined to identify the option that provides maximum oil recovery. The simulation results showed that drilling horizontal wells in a north–south direction resulted in higher well productivity, and that wells with significantly more water production problems can be controlled using a horizontal downhole water sink.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4645 ◽  
Author(s):  
Jie Zhang ◽  
Xizhe Li ◽  
Weijun Shen ◽  
Shusheng Gao ◽  
Huaxun Liu ◽  
...  

The movable water saturation of tight sandstone reservoirs is an important parameter in characterizing water production capacity, and there is a great need to understand the relationship between movable water saturation and water production characteristics. However, movable water behavior in this context remains unclear. In this study, four groups of tight sandstone cores from the Sulige gas field are measured to understand the movable water saturation characteristics. Then, the effects such as reservoir micropore throat, clay mineral and physical properties on movable water saturation are analyzed, and the movable water saturation and water production characteristics are discussed. The results show that higher movable water saturation will result in a greater amount of water in the gas drive. There is a critical pressure difference of the gas drive, and a large amount of movable water will flow out. Movable water saturation is independent of the porosity, permeability and initial water saturation, while it is closely related to the reservoir micropore throat and clay mineral content. Movable water is mainly distributed in the medium and large pores; the larger the proportion of such pores, the higher the degree of movable water saturation. A lower mineral content will lead to higher movable water saturation in tight sandstone gas reservoirs. These results provide clues for identifying gas–water bearing reservoirs and evaluating and predicting the water production characteristics in gas wells in tight sandstone gas reservoirs.


Author(s):  
Andrea Springer ◽  
Antje Glass ◽  
Julia Probst ◽  
Christina Strube

AbstractAround the world, human health and animal health are closely linked in terms of the One Health concept by ticks acting as vectors for zoonotic pathogens. Animals do not only maintain tick cycles but can either be clinically affected by the same tick-borne pathogens as humans and/or play a role as reservoirs or sentinel pathogen hosts. However, the relevance of different tick-borne diseases (TBDs) may vary in human vs. veterinary medicine, which is consequently reflected by the availability of human vs. veterinary diagnostic tests. Yet, as TBDs gain importance in both fields and rare zoonotic pathogens, such as Babesia spp., are increasingly identified as causes of human disease, a One Health approach regarding development of new diagnostic tools may lead to synergistic benefits. This review gives an overview on zoonotic protozoan, bacterial and viral tick-borne pathogens worldwide, discusses commonly used diagnostic techniques for TBDs, and compares commercial availability of diagnostic tests for humans vs. domestic animals, using Germany as an example, with the aim of highlighting existing gaps and opportunities for collaboration in a One Health framework.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Minna M. D. Romano ◽  
Henrique T. Moreira ◽  
André Schmidt ◽  
Benedito Carlos Maciel ◽  
José Antônio Marin-Neto

Right ventricle (RV) is considered a neglected chamber in cardiology and knowledge about its role in cardiac function was mostly focused on ventricular interdependence. However, progress on the understanding of myocardium diseases primarily involving the RV led to a better comprehension of its role in health and disease. In Chagas disease (CD), there is direct evidence from both basic and clinical research of profound structural RV abnormalities. However, clinical detection of these abnormalities is hindered by technical limitations of imaging diagnostic tools. Echocardiography has been a widespread and low-cost option for the study of patients with CD but, when applied to the RV assessment, faces difficulties such as the absence of a geometrical shape to represent this cavity. More recently, the technique has evolved to a focused guided RV imaging and myocardial deformation analysis. Also, cardiac magnetic resonance (CMR) has been introduced as a gold standard method to evaluate RV cavity volumes. CMR advantages include precise quantitative analyses of both LV and RV volumes and its ability to perform myocardium tissue characterization to identify areas of scar and edema. Evolution of these cardiac diagnostic techniques opened a new path to explore the pathophysiology of RV dysfunction in CD.


2013 ◽  
Vol 275-277 ◽  
pp. 456-461
Author(s):  
Lei Zhang ◽  
Lai Bing Zhang ◽  
Bin Quan Jiang ◽  
Huan Liu

The accurate prediction of the dynamic reserves of gas reservoirs is the important research content of the development of dynamic analysis of gas reservoirs. It is of great significance to the stable and safe production and the formulation of scientific and rational development programs of gas reservoirs. The production methods of dynamic reserves of gas reservoirs mainly include material balance method, unit pressure drop of gas production method and elastic two-phase method. To clarify the characteristics of these methods better, in this paper, we took two typeⅠwells of a constant volume gas reservoir as an example, the dynamic reserves of single well controlled were respectively calculated, and the results show that the order of the calculated volume of the dynamic reserves by using different methods is material balance method> unit pressure drop of gas production method >elastic two-phase method. Because the material balance method is a static method, unit pressure drop of gas production method and elastic two-phase method are dynamic methods, therefore, for typeⅠwells of constant volume gas reservoirs, when the gas wells reached the quasi-steady state, the elastic two-phase method is used to calculate the dynamic reserves, and when the gas wells didn’t reach the quasi-steady state, unit pressure drop of gas production method is used to calculate the dynamic reserves. The conclusion has some certain theoretical value for the prediction of dynamic reserves for constant volume gas reservoirs.


2021 ◽  
Author(s):  
Bashirul Haq

Abstract Sour gas reservoirs are vital sources for natural gas production. Sulphur deposition in the reservoir reduces a considerable amount of gas production due to permeability reduction. Consequently, well health monitoring and early prediction of Sulphur deposition are crucial for effective gas production from a sour gas reservoir. Dynamic gas material balance analysis is a useful technique in calculating gas initially in place utilizing the flowing wellhead or bottom hole pressures and rates during the well's lifetime. The approach did not apply to monitor a producing gas's health well and detect Sulphur deposition. This work aims to (i) modify dynamic gas material balance equation by adding the Sulphur deposition term, (ii) build a model to predict and validate the issue utilizing the modified equation. A unique form of the flowing material balance is developed by including Sulphur residue term. The curve fitting tool and modified flowing gas material balance are applied to predict well-expected behaviour. The variation between expected and actual performance indicates the health issue of a well. Initial, individual components of the model are tested. Then the model is validated with the known values. The workflow is applied to active gas field and correctly detected the health issue. The novel workflow can accurately predict Sulphur evidence. Besides,the workflow can notify the production engineers to take corrective measures about the subject. Keywords: Sulfur deposition, Dynamic gas material balance analysis, Workflow


2022 ◽  
Author(s):  
Hashem Al-Obaid ◽  
Sultan A. Asel ◽  
Jon Hansen ◽  
Rio Wijaya

Abstract Many techniques have been used to model, diagnose and detect fracture dimension and propagation during hydraulic fracturing. Diagnosing fracture dimension growth vs time is of paramount importance to reach the desired geometry to maximize hydrocarbon production potential and prevent contacting undesired fluid zones. The study presented here describes a technique implemented to control vertical fracture growth in a tight sandstone formation being stimulated near a water zone. This gas well was completed vertically as openhole with Multi- Stage Fracturing (MSF). Pre-Fracturing diagnostic tests in combination with high-resolution temperature logs provided evidence of vertical fracture height growth downward toward water zone. Pre-fracturing flowback indicated water presence that was confirmed by lab test. Several actions were taken to mitigate fracture vertical growth during the placement of main treatment. An artificial barrier with proppant was placed in the lower zone of the reservoir before main fracturing execution. The rate and viscosity of fracturing fluids were also adjusted to control the net pressure aiming to enhance fracture length into the reservoir. The redesigned proppant fracturing job was placed into the formation as planned. Production results showed the effectiveness of the artificial lower barrier placed to prevent fracture vertical growth down into the water zone. Noise log consists of Sonic Noise Log (SNL) and High Precision Temperature (HPT) was performed. The log analysis indicated that two major fractures were initiated away from water-bearing zone with minimum water production. Additionally, in- situ minimum stress profile indicated no enough contrast between layers to help confine fracture into the targeted reservoir. Commercial gas production was achieved after applying this stimulation technique while keeping water production rate controlled within the desired range. The approach described in this paper to optimize gas production in tight formation with nearby water contact during hydraulic fracturing treatments has been applied with a significant improvement in well production. This will serve as reference for future intervention under same challenging completion conditions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257971
Author(s):  
David A. Wilkinson ◽  
Matthew Edwards ◽  
Jackie Benschop ◽  
Shahista Nisa

Leptospirosis is a zoonotic disease of global importance. The breadth of Leptospira diversity associated with both human and animal disease poses major logistical challenges to the use of classical diagnostic techniques, and increasingly molecular diagnostic tools are used for their detection. In New Zealand, this has resulted in an increase in positive cases reported nationally that have not been attributed to the infecting serovar or genomospecies. In this study, we used data from all pathogenic Leptospira genomes to identify a partial region of the glmU gene as a suitable locus for the discrimination of the infecting species and serovars of New Zealand-endemic Leptospira. This method can be used in culture and culture-independent scenarios making it flexible for diagnostics in humans, animals, and environmental samples. We explored the use of this locus as a molecular barcoding tool via the Oxford Nanopore Technology (ONT) sequencing platform MinION. Sequences obtained by this method allowed specific identification of Leptospira species in mixed and enriched environmental cultures, however read error inherent in the MinION sequencing system reduced the accuracy of strain/variant identification. Using this approach to characterise Leptospira in enriched environmental cultures, we detected the likely presence of Leptospira genomospecies that have not been reported in New Zealand to date. This included a strain of L. borgpetersenii that has recently been identified in dairy cattle and sequences similar to those of L. mayottensis. L. tipperaryensis, L. dzianensis and L. alstonii.


2016 ◽  
Vol 9 (1) ◽  
pp. 207-215 ◽  
Author(s):  
Hongling Zhang ◽  
Jing Wang ◽  
Haiyong Zhang

Shale gas is one of the primary types of unconventional reservoirs to be exploited in search for long-lasting resources. Production from shale gas reservoirs requires horizontal drilling with hydraulic fracturing to achieve the most economic production. However, plenty of parameters (e.g., fracture conductivity, fracture spacing, half-length, matrix permeability, and porosity,etc) have high uncertainty that may cause unexpected high cost. Therefore, to develop an efficient and practical method for quantifying uncertainty and optimizing shale-gas production is highly desirable. This paper focuses on analyzing the main factors during gas production, including petro-physical parameters, hydraulic fracture parameters, and work conditions on shale-gas production performances. Firstly, numerous key parameters of shale-gas production from the fourteen best-known shale gas reservoirs in the United States are selected through the correlation analysis. Secondly, a grey relational grade method is used to quantitatively estimate the potential of developing target shale gas reservoirs as well as the impact ranking of these factors. Analyses on production data of many shale-gas reservoirs indicate that the recovery efficiencies are highly correlated with the major parameters predicted by the new method. Among all main factors, the impact ranking of major factors, from more important to less important, is matrix permeability, fracture conductivity, fracture density of hydraulic fracturing, reservoir pressure, total organic content (TOC), fracture half-length, adsorbed gas, reservoir thickness, reservoir depth, and clay content. This work can provide significant insights into quantifying the evaluation of the development potential of shale gas reservoirs, the influence degree of main factors, and optimization of shale gas production.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2726-2737

Unconventional gas reservoirs are now the targets for meeting the demand for gas. These reservoirs are at the depth of more than 10,000 ft (even over 15000 depth as well) and are difficult to be exploited by conventional methods. For the last decades hydraulic fracturing has become the tool to develop these resources. Mathematical models (2D and pseudo-3D) have been developed for fracture geometry, which should be realistically created at the depth by surface controllable treatment parameters. If the reservoir rock is sandstone, then proppant fracturing is suitable and if the rock is carbonates, then acid fracturing is applicable. In both cases, proper design of controllable treatment parameters within constraints is essential. This needs proper optimization model which gives real controllable parametric vales. The model needs the most important analyses from geomechanical study and linear elastic fracture mechanics of rock containing unconventional gas so that fracture geometry makes maximum contact with the reservoirs for maximum recovery. Currently available software may lack proper optimization scheme containing geomechanical stress model, fracture geometry, natural fracture interactions, real field constraints and proper reservoir engineering model of unconventional gas resources, that is, production model from hydraulically fractured well (vertical and horizontal). An optimization algorithm has been developed to integrate all the modules, as mentioned above, controllable parameters, field constraints and production model with an objective function of maximum production (with or without minimization of treatment cost). Optimization is basically developed based on Direct Search Genetic and Polytope algorithm, which can handle dual objective function, non-differentiable equations, discontinuity and non-linearity. A dual objective function will meet operator’s economic requirements and investigate conflict between two objectives. The integrated model can be applied to a vertical or horizontal well in tight gas or ultra-tight shale gas deeper than over 10,000 ft. A simulation (with industrial simulators) was conducted to investigate and analyse fracture propagation behavior, under varying parameters with respect to the fracture design process, for tight gas reservoirs. Results indicate that hydraulic fracture propagation behavior is not uninhibited in deep reservoirs as some may believe that minor variations of variables such as in-situ stress, fluid properties etc. are often detrimental to fracture propagation in some conditions. Application of this model to a hypothetical tight and ultra-tight unconventional gas formations indicates a significant gas production at lower treatment cost; whereas the resources do not flow without any stimulation (hydraulic fracturing).


Sign in / Sign up

Export Citation Format

Share Document