Optimising deepwater drilling safety and efficiency in Australia with closed-loop circulation drilling systems

2012 ◽  
Vol 52 (1) ◽  
pp. 391
Author(s):  
Julmar Shaun Sadicon Toralde ◽  
David John Carr ◽  
Chad Henry Wuest

Closed-loop circulation drilling (CLCD) systems provide an increasingly viable alternative to open-to-the-atmosphere conventional drilling systems by emphasising the use of closed and pressurisable systems to allow a scalable approach that produces a range of benefits. These range from increased personnel and environmental safety to better data resolution and even greater control over the drilling process. This paper states how CLCD addresses a need in a post-Macondo world, where deepwater drilling is under intense and increased regulatory control, by providing flexible systems that supplement the safety and efficiency of deepwater drilling operations. Furthermore, it describes the details of how CLCD systems can be installed and used on moored and dynamically positioned drilling vessels, and points out how it may be deployed for deepwater conditions in Australia. Recent successes and issues encountered in the application of this technology in the Asia Pacific region are also shared.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Fang ◽  
Ze-Min Pan ◽  
Bing Han ◽  
Shao-Hua Fei ◽  
Guan-Hua Xu ◽  
...  

Drilling carbon fiber reinforced plastics and titanium (CFRP/Ti) stacks is one of the most important activities in aircraft assembly. It is favorable to use different drilling parameters for each layer due to their dissimilar machining properties. However, large aircraft parts with changing profiles lead to variation of thickness along the profiles, which makes it challenging to adapt the cutting parameters for different materials being drilled. This paper proposes a force sensorless method based on cutting force observer for monitoring the thrust force and identifying the drilling material during the drilling process. The cutting force observer, which is the combination of an adaptive disturbance observer and friction force model, is used to estimate the thrust force. An in-process algorithm is developed to monitor the variation of the thrust force for detecting the stack interface between the CFRP and titanium materials. Robotic orbital drilling experiments have been conducted on CFRP/Ti stacks. The estimate error of the cutting force observer was less than 13%, and the stack interface was detected in 0.25 s (or 0.05 mm) before or after the tool transited it. The results show that the proposed method can successfully detect the CFRP/Ti stack interface for the cutting parameters adaptation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 969
Author(s):  
Eric Cayeux ◽  
Benoît Daireaux ◽  
Adrian Ambrus ◽  
Rodica Mihai ◽  
Liv Carlsen

The drilling process is complex because unexpected situations may occur at any time. Furthermore, the drilling system is extremely long and slender, therefore prone to vibrations and often being dominated by long transient periods. Adding the fact that measurements are not well distributed along the drilling system, with the majority of real-time measurements only available at the top side and having only access to very sparse data from downhole, the drilling process is poorly observed therefore making it difficult to use standard control methods. Therefore, to achieve completely autonomous drilling operations, it is necessary to utilize a method that is capable of estimating the internal state of the drilling system from parsimonious information while being able to make decisions that will keep the operation safe but effective. A solution enabling autonomous decision-making while drilling has been developed. It relies on an optimization of the time to reach the section total depth (TD). The estimated time to reach the section TD is decomposed into the effective time spent in conducting the drilling operation and the likely time lost to solve unexpected drilling events. This optimization problem is solved by using a Markov decision process method. Several example scenarios have been run in a virtual rig environment to test the validity of the concept. It is found that the system is capable to adapt itself to various drilling conditions, as for example being aggressive when the operation runs smoothly and the estimated uncertainty of the internal states is low, but also more cautious when the downhole drilling conditions deteriorate or when observations tend to indicate more erratic behavior, which is often observed prior to a drilling event.


Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


2021 ◽  
Author(s):  
Bruno Luiz Barbosa das Chagas ◽  
Celso Kazuyuki Morooka

Abstract Advances in subsea exploration in the oceans to discover new petroleum reservoirs and sometimes different kind of minerals at the seabed in ultra deepwater, continuously introduce new challenges in offshore drilling operations. This motivates the development of increasingly safe maritime operations. In offshore petroleum, a marine drilling riser is the pipe that connects a wellhead at the sea bottom to a drillship at the sea surface, as an access to the wellbore. It serves as a guide for the drilling column with the drill bit and conductor to carry cuttings of rock coming from the wellbore drilling and its construction. Drilling riser is constantly exposed to adversity from the environment, such as waves, sea currents and platform motions induced by waves. These elements of the environment are prevailing factors that can cause a riser failure during deepwater drilling operations with undesirable consequences for the environment. In the present work, key parameters that influence the probability of fatigue failure in a marine drilling riser are identified, and a parametric evaluation with those parameters are carried out. Dynamic behavior of a riser is previously calculated and fatigue damage is estimated. Afterwards, the First Order Reliability Method (FORM) is applied to determine the probability of fatigue failure on the riser. Fundamentals of the procedure are described, and results are illustrated through the analysis for a typical riser in deepwater drilling operation. Parametric evaluations are done observing points considered as critical along the riser length, and looking to the sensitivity of key parameters in the process. For this study, the SN curve from API guidelines is applied and accumulated fatigue damage is estimated from simulations of the stress time series and applying the Palmgren-Miner’s rule. Finally, the influence of each parameter in the reliability of fatigue failure is verified and discussions given.


2021 ◽  
pp. 32-37
Author(s):  
S. A. Bakharev

The article covers the problems of reagent-free clarification of circulating and waste waters of enterprises with their production sites located in valleys of spawning rivers in the environmentally-sensitive northern territories. It is shown that horizontal sumps, widely used at mining enterprises due to their low construction and operation costs, fail to ensure the production and environmental indicators required in the current conditions. The article analyses the results of 20 years of application in the Russian Federation and the countries of the Asia-Pacific region of the complex acoustic method (CAM), based on the mechanisms of coagulation of fine particles, forced sedimentation of initial and coagulated particles, as well as sludge thickening and dewatering. The advantages and limitations are shown for the CAM method, developed by the author of the article and based on the principles of: complexity, with the use of the laws of linear and nonlinear acoustics; acoustic impact on the water system for the purpose of acoustic degassing of water; acoustic coagulation of fine suspended solids (and subsequent gravity sedimentation of the newly formed aggregates); acoustic (forced) sedimentation of the original and previously acoustically coagulated suspended solids; acoustic thickening of sludge in sumps and acoustic dewater ing of sludge at depositing sites with drainage systems; the cascade (boundary) nature of acoustic impacts on the water system in the main water catchers, sumps, etc. The specific behavior of processes under a complex acoustic impact ensures their high productivity and low power consumption values (unattainable by any other methods) and the required environmental safety in the special conditions of the Far North and the Far East.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Oluseyi Adewale Orelaja ◽  
Xingsong Wang ◽  
Donghua Shen ◽  
Dauda Sh. Ibrahim ◽  
Tianzheng Zhao ◽  
...  

Bone drilling is known as one of the most sensitive milling processes in biomedical engineering field. Fracture behavior of this cortical bone during drilling has attracted the attention of many researchers; however, there are still impending concerns such as necrosis, tool breakage, and microcracks due to high cutting forces, torques, and high vibration while drilling. This paper presents a comparative analysis of the cutting forces, torques, and vibration resulted on different bone samples (bovine, porcine, and artificial femur) using a 6dof Robot arm effector with considerations of its stiffness effects. Experiments were conducted on two spindle speeds of 1000 and 1500 rpm with a drill bit diameter of 2.5 mm and 6 mm depth of cut. The results obtained from the specimens were processed and analyzed using MATLAB R2015b and Visio 2000 software; these results were then compared with a prior test using manual and conventional drilling methods. The results obtained show that there is a significant drop in the average values of maximum drilling force for all the bone specimens when the spindle speed changes from 1000 rev/min to 1500 rev/min, with a drop from (20.07 to 12.34 N), approximately 23.85% for bovine, (11.25 to 8.14 N) with 16.03% for porcine, and (5.62 to 3.86 N) with 33.99% for artificial femur. The maximum average values of torque also decrease from 41.2 to 24.2 N·mm (bovine), 37.0 to 21.6 N·mm (porcine), and 13.6 to 6.7 N·mm (artificial femur), respectively. At an increase in the spindle speed, the vibration amplitude on all the bone samples also increases considerably. The variation in drilling force, torque, and vibration in our result also confirm that the stiffness of the robot effector joint has negative effect on the bone precision during drilling process.


Author(s):  
Daiyan Ahmed ◽  
Yingjian Xiao ◽  
Jeronimo de Moura ◽  
Stephen D. Butt

Abstract Optimum production from vein-type deposits requires the Narrow Vein Mining (NVM) process where excavation is accomplished by drilling larger diameter holes. To drill into the veins to successfully extract the ore deposits, a conventional rotary drilling rig is mounted on the ground. These operations are generally conducted by drilling a pilot hole in a narrow vein followed by a hole widening operation. Initially, a pilot hole is drilled for exploration purposes, to guide the larger diameter hole and to control the trajectory, and the next step in the excavation is progressed by hole widening operation. Drilling cutting properties, such as particle size distribution, volume, and shape may expose a significant drilling problem or may provide justification for performance enhancement decisions. In this study, a laboratory hole widening drilling process performance was evaluated by drilling cutting analysis. Drill-off Tests (DOT) were conducted in the Drilling Technology Laboratory (DTL) by dint of a Small Drilling Simulator (SDS) to generate the drilling parameters and to collect the cuttings. Different drilling operations were assessed based on Rate of Penetration (ROP), Weight on Bit (WOB), Rotation per Minute (RPM), Mechanical Specific Energy (MSE) and Drilling Efficiency (DE). A conducive schedule for achieving the objectives was developed, in addition to cuttings for further interpretation. A comprehensive study for the hole widening operation was conducted by involving intensive drilling cutting analysis, drilling parameters, and drilling performance leading to recommendations for full-scale drilling operations.


2018 ◽  
Vol 226 ◽  
pp. 01011
Author(s):  
Vadim V. Kuts ◽  
Mikhail S. Razumov ◽  
Aleksandr S. Byshkin

Drilling holes is one of the most common operations in the part production. Consequently, increasing the efficiency of this process is an urgent task. To improve the efficiency of the drilling process, the South- West University developed a method of drilling for pre-stressed and prestrained workpiece material, which requires a sample to be subjected to elastic strain under load not exceeding the proportionality limit of the workpiece material. That is, when the load is removed, the dimensions of the workpiece remain unchanged. The paper presents the experimental device designed to determine the axial force and torque when drilling holes in the stress-strain workpiece material. Multi-factor experiments were carried out to obtain empirical dependences of the axial force and torque arising in drilling holes in the stress-strain workpiecematerial on the process parameters.


2016 ◽  
Vol 10 (5) ◽  
pp. 780-785 ◽  
Author(s):  
Akira Mizobuchi ◽  
◽  
Yuki Kagawa ◽  
Tohru Ishida

It is well known that chemically strengthened glass plate has excellent strength and hardness properties. These characteristic properties are advantageous for the touch screens used in mobile devices. However, they are detrimental to the process of machining the glass plate. For example, chipping and crack occur around the inlet and outlet of the drilled hole, and the rate of tool wear is significant. Therefore, the surface quality and machining efficiency are low. The drilling process is extremely difficult. In this study, we describe the use of a miniature drilling method to achieve high-quality drilled holes in chemically strengthened glass plate using an electroplated diamond tool with a diameter of 1 mm or less. Using the developed tool with a diameter of 0.5 mm, it is demonstrated that the conventional drilling method can be used to drill a through-hole in the glass plate.


Sign in / Sign up

Export Citation Format

Share Document