Monitoring marine effects of produced formation water discharge in Bass Strait

2019 ◽  
Vol 59 (1) ◽  
pp. 1
Author(s):  
Lachlan Barnes ◽  
Katrina Hall ◽  
Craig Blount ◽  
Madelaine Hooper ◽  
David van Senden ◽  
...  

Esso Australia Pty Ltd (Esso), in a joint venture with BHP Petroleum Pty Ltd, operates 23 oil and gas production platforms and subsea facilities off the Victorian coast near Gippsland, Australia. The underlying reservoirs have multi-darcy sands and a strong aquifer water drive, so in addition to oil and gas, the extraction activities result in substantial amounts of produced formation water (PFW). Following on-platform treatment, PFW containing a variety of hydrocarbons, ions and inorganics, such as calcium, ammonia, sulfate and trace metals, is discharged into the receiving environment. This paper reports on a study undertaken to investigate the potential effects of PFW discharges from two platforms (Tuna (TNA) and West Kingfish (WKF)) on the receiving environment. Four complementary sampling approaches were used to address the objectives of the study: (1) measure and estimate the dilution of Rhodamine FWT dye solution in the receiving environment following injection into the PFW discharge line, (2) collect and analyse undiluted PFW samples before discharge, (3) collect and analyse marine water samples from within the discharge plume and (4) collect and analyse sediment and benthic infauna samples at various distances away from platforms and at reference locations. Results indicate the rate of PFW dilution within the receiving environment is more rapid than predicted by existing numerical models and that the concentration of all analytes present in PFW were below Australian and New Zealand Environment Conservation Council (ANZECC) 2000 guideline trigger values for 80% protection; moreover, with one exception, analytes were not detected above background levels more than 59 m from the platform. With the exception of a few samples containing metals, specifically arsenic, copper, lead, zinc and nickel, concentrations of analytes in the majority of sediment samples collected were below the ANZECC 2000 and revised 2013 sediment quality guidelines. A diverse range of benthic infauna were sampled, with the abundance of a limited number of taxa influenced by distance from individual platforms. No substantial differences in abundances of benthic infauna were detected at distances greater than 1.3 km from TNA and 1.0 km from WKF, compared with reference locations. These results indicate that PFW discharges from TNA and WKF likely represent a low risk to the receiving environment.

Author(s):  
Maryam Abdulali Abdulla

Total petroleum hydrocarbons (TPHs) and Polycyclic aromatic hydrocarbons (PAHs) are priority pollutants which are known to be associated with petroleum products. They are released into the marine environment via accidental spillage, exploration and transportation. The present study aims to assess the impact of petroleum and gas extraction activities on the pollution of coastal marine sediment of the western coastline of Qatar. Sixty-six surface sediment samples were collected along the western coastal area. The concentration of organic hydrocarbons (TPHs and PAHs) were determined using GC-FID and GC-MS, respectively. Sediment characteristics including pH, temperature, TOC and particle size were also measured. The results indicated low concentrations of TPH (<0.001-0.246 μg/g dry weight sediment) and PAHs (<0.001-0.044 μg/g dry weight sediment). The concentrations for both organic pollutants were lower compared to the previous studies done within Qatar and in the Arabian Gulf and also indicated below the available permissible limit set by the Ministry of Municipality and Environment of Qatar and other sediment quality guidelines (SQGs) used worldwide (NOAA).


The formation/deposition of hydrate and scale in gas production and transportation pipeline has continue to be a major challenge in the oil and gas industry. Pipeline transport is one of the most efficient, reliable and safer means of transporting petroleum products from the well sites to either the refineries or to the final destinations. Acetic acid (HAc), is formed in the formation water which also present in oil and gas production and transportation processes. Acetic acid aids corrosion in pipelines and in turn aids the formation and deposition of scales which may eventually choke off flow. Most times, Monethylene Glycol (MEG) is added into the pipeline as an antifreeze and anticorrosion agent. Some laboratory experiments have shown that the MEG needs to be separated from unwanted substance such as HAc that are present in the formation water to avoid critical conditions in the pipeline. Internal pipeline corrosion slows and decreases the production of oil and gas when associated with free water and reacts with CO2 and organic acid by lowering the integrity of the pipe. In this study, the effect of Mono-Ethylene Glycol (MEG) and Acetic acid (HAc) on the corrosion rate of X-80 grade carbon steel in CO2 saturated brine were evaluated at 25oC and 80oC using 3.5% NaCl solution in a semi-circulation flow loop set up. Weight loss and electrochemical measurements using the linear polarization resistance (LPR) and electrochemical impedance spectroscope (EIS) were used in measuring the corrosion rate as a function of HAc and MEG concentrations. The results obtained so far shows an average corrosion rate increases from 0.5 to 1.8 mm/yr at 25oC, and from 1.2 to 3.5 mm/yr at 80oC in the presence of HAc. However, there are decrease in corrosion rate from 1.8 to 0.95 mm/yr and from 3.5 to 1.6mm/yr respectively at 25oC and 80oC on addition of 20% and 80% MEG concentrations to the solution. It is also noted that the charge transfer with the electrochemical measurements (EIS) results is the main corrosion controlling mechanism under the test conditions. The higher temperature led to faster film dissolution and higher corrosion rate in the presence of HAc. The EIS results also indicate that the charge transfer controlled behaviour was as a result of iron carbonate layer accelerated by the addition of different concentrations of MEG to the system. Key words: CO2 corrosion, Carbon steel, MEG, HAc, Inhibition, Environment.


2012 ◽  
Author(s):  
Amer Badr Merdhah ◽  
Abu Azam Mohd Yassin

Kerak pemendapan merupakan satu daripada masalah paling penting dan serius dalam sistem suntikan air. Kerak kadangkala mengehadkan atau menghalang penghasilan gas dan minyak melalui penyumbatan matrik atau perpecahan pembentukan minyak dan jeda yang berlubang. Makalah ini mengetengahkan kesimpulan pengukuran makmal bagi kerak terbentuk di dalam keterlarutan medan minyak biasa dalam sintetik air masin (pembentukan air dan air laut) bagi pembentukan air yang mengandungi barium dan kandungan garam yang tinggi pada suhu 40 hingga 90°C pada tekanan atmosfera. Keputusan uji kaji mengesahkan pola kebergantungan keterlarutan bagi kerak medan minyak biasa pada keadaan ini. Pada suhu yang lebih tinggi, kerak bagi CaCO3, CaSO4, dan SrSO4 meningkat manakala kerak BaSO4 menurun disebabkan oleh keterlarutan CaCO3, CaSO4, dan SrSO4 menurun dan keterlarutan BaSO4 meningkat dengan kenaikan suhu. Kata kunci: Masalah pengskalaan; skala keterlarutan; paras kandungan garam tinggi; logam barium tinggi Scale deposition is one of the most important and serious problems which water injection systems are generally engaged in. Scale sometimes limits or blocks oil and gas production by plugging the oil–producing formation matrix or fractures and the perforated intervals. This paper presents a summary of the laboratory measurements of the solubility of common oil field scales in synthetic brines (formation water and sea water) of high–barium and high–salinity formation waters at 40 to 90°C and atmospheric pressure. The experimental results confirm the general trend in solubility dependencies for common oil field scales at these conditions. At higher temperatures the deposition of CaCO3, CaSO4 and SrSO4 scale increases and the deposition of BaSO4 scale decreases since the solubilities of CaCO3, CaSO4 and SrSO4 scales decreases and the solubility of BaSO4 increases with increasing temperature. Key words: Scaling problems; solubility of scale; high salinity; high barium


2019 ◽  
Vol 59 (3) ◽  
Author(s):  
Nathan Fay

This year marks the golden jubilee of Australia’s offshore petroleum industry after the first gas was produced from Bass Strait by Esso and BHP’s Gippsland Basin Joint Venture. For half a century our industry has been driven by technology – pioneering technical excellence and pushing the envelope in the pursuit of much needed oil and gas production. Today, the landscape in East Australia is changing and gas is at the forefront of the discussion. Declines in East Australia’s historical conventional fields have seen gas supply tighten and prices rise. There is a strong need for additional affordable and reliable gas supply. While continued improvements in technology remain a critically important enabler in developing Australia’s gas resources; global supply and demand, regulatory frameworks, and the commercial arrangements that underpin new developments are becoming more and more important. ExxonMobil Australia’s new Chairman, Nathan Fay, has a wealth of experience working with gas markets around the world. He will explain why it is so important for policymakers to establishment a stable free market environment to encourage these long-term relationships. To view the video, click the link on the right.


2015 ◽  
Vol 55 (2) ◽  
pp. 496
Author(s):  
Venner Bettina ◽  
Wood Chris ◽  
Welsh Kevin ◽  
Mossman Fiona ◽  
Goiak Paul ◽  
...  

Santos, Beach Energy and Senex Energy are collaborating with the SA Government and TAFE SA to set up a hub for onshore oil and gas training in Adelaide. The training facility provides a fully immersive simulated oil and gas production environment, as well as static equipment displays for demonstration and educational purposes. It is used for technical training, including safety, environmental and sustainable operational principles and key maintenance activities. The simulated production environment includes different pump types, gas compressors, a pig launcher and receiver, gas metering skid, field separator and small tanks, as well as associated pressure safety valves, flow valves and other instruments. Water is used to simulate oil and air is used to simulate gas flow. The static equipment display includes various valve types, flanges and a wellhead. Santos, as operator of the SA Cooper Basin joint venture (of which Beach Energy is a member), has committed significant oil and gas production and mechanical equipment, engineering design, transportation and installation of the training facility’s equipment. The SA Government, Senex Energy and Beach Energy have committed funding for fit-out, capital works and the running of the facility for the first two years. Industry partners GPA Engineering, Fyfe Engineering, Logicamms, Veolia Environmental Services, Toll Energy, Transfield Services, Ottoway Engineering, Bureau Veritas, MRC Group, Max Cranes, Whitham Media Australia, Inductabend, Toyota Australia, James Walker Australia, Coventry Fasteners, Centralian Controls and Central Diesel are providing expertise and services. The training facility officially opened on 16 February 2015


2016 ◽  
Author(s):  
Joy Eze ◽  
Oluwarotimi Onakomaiya ◽  
Ademola Ogunrinde ◽  
Olusegun Adegboyega ◽  
James Wopara ◽  
...  

ABSTRACT The exploration and production of oil and gas mostly occurs in remote locations, so as to minimize human exposure and Health Security Safety and Environment (HSSE) risks. Shell Companies in Nigeria is not any different having operated for over 50 years in Nigeria with the largest footprint of all the international oil and gas companies operating in the country spanning over land, swamp, shallow waters and offshore terrains. Shell Petroleum Development Company, the operator of a joint venture (the SPDC JV) between the government-owned Nigerian National Petroleum Corporation – NNPC (55% share), Shell (30%), Total E&P Nigeria Ltd (10%) and the ENI subsidiary Agip Oil Company Limited (5%) focuses mostly on onshore and shallow water oil and gas production in the Niger Delta with about 60+ producing oil and gas fields and a network of approximately 5,000 kilometers of oil and gas pipelines and flow lines spread across the Niger Delta. Escravos Beach is over 60km from the closest major city, Warri, a major oil and gas zone in the Niger Delta. It is bounded by the Escravos River to the East, Chevron canal to the North and the Atlantic Ocean to the South and is covered with predominantly mangrove forest especially along the creeks and consists of a number of natural and man-made waterways (rivers, creeks and canals). Unlike most other onshore operations, this location can only be accessed via the waterways; thus requiring the rig equipment and every other equipment to be channeled via the waterways and subsequently on land to arrive at the site. The amphibious nature of this operation requires a combination of onshore and swamp requirements with increased HSSE exposure, logistics requirement and cost. This paper aims to highlight the practical experience garnered in the rig move and workover operations of Rig XYZ which operated in the Escravos Beach region.


Author(s):  
Jefferson Lacerda ◽  
Marcelo I. Lourenço ◽  
Theodoro A. Netto

The constant advance of offshore oil and gas production in deeper waters worldwide led to increasing operational loads on flexible pipes, making mechanical failures more susceptible. Therefore, it is important to develop more reliable numerical tools used in the design phase or during the lifetime to ensure the structural integrity of flexible pipes under specific operating conditions. This paper presents a methodology to develop simple finite element models capable of reproducing the behavior of structural layers of flexible pipes under external hydrostatic pressure up to collapse. These models use beam elements and, in multi-layer analyses, include nonlinear contact between layers. Because of the material anisotropy induced by the manufacturing process, an alternative method was carried out to estimate the average stress-strain curves of the metallic layers used in the numerical simulations. The simulations are performed for two different configurations: one where the flexible pipe is composed only of the interlocked armor, and another considering interlocked armor and pressure armor. The adequacy of the numerical models is finally evaluated in light of experimental tests on flexible pipes with nominal internal diameters of 4 and 6 in.


2021 ◽  
Author(s):  
Maryam Abdulali Abdulla ◽  
Azenith Castillo

Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs) are priority pollutants, which are known to be associated with petroleum products. They are released into the marine environment via accidental spillage, exploration and transportation. The present study aims to investigate the type, origin and weathering of petroleum in the coastal marine sediment of the western coastline of Qatar. Sixty-six surface sediment samples were collected along the western coastal area. The concentrations of organic hydrocarbons (TPHs and PAHs) were determined using GC-FID and GC-MS, respectively. Sediment characteristics including pH, temperature, TOC and particle size were also measured. The results indicated low concentrations of TPH (<0.001-0.246 µg/g dry weight sediment) and PAHs (<0.001-0.044 µg/g dry weight sediment). The concentrations for both organic pollutants were lower compared to the previous studies done within Qatar and in the Arabian Gulf and also indicated below the available permissible limit set by the Ministry of Municipality and Environment of Qatar and other Sediment Quality Guidelines (SQGs) used worldwide (NOAA). Pollution concentration profile is site specific where concentrations are high within the proximity of the source and derived from both direct inputs of petrogenic and pyrogenic contribution.


1984 ◽  
Vol 24 (1) ◽  
pp. 180
Author(s):  
D. J. Stanley ◽  
G. Halliday

In 1981, South Australian Oil and Gas Corporation Pty Ltd commenced a project to apply Massive Hydraulic Fracture (MHF) technology to the tight gas reservoirs of the Tirrawarra and Patchawarra Formations of the Big Lake Field. Four wells had defined the potential at depths of 8500-10 000 ft (2500-3000 m) in the early 1970s but early attempts to stimulate gas production were unsuccessful.The Tirrawarra Sandstone, as a massive unit of 120-200 ft (35-60 m) thickness, was a prime candidate. The Patchawarra sandstones, ranging up to 40 ft (12 m) thick and interbedded with shales and coals, presented a more difficult problem.Petrologic analysis disclosed quartz sandstones in which the pore system consists mainly of large irregularly shaped dissolution pores. Diagenesis has destroyed primary porosity and precipitated authigenic illite, illite-smectite, kaolinite and siderite. The gas contains 32 per cent CO2 and is very dry. Temperatures are close to 400°F (200°C). The formations are overpressured.The project has drilled two wells, Big Lake 26 and 27, and applied two MHF treatments in Big Lake 26. One further MHF remains to be done in Big Lake 27. Each MHF treatment has been tailored to the particular petrologic, reservoir, stratigraphic, pressure and temperature conditions of that zone. The tailoring of MHF design has been further refined by running a 'mini-frac' with 10 000 gal (45 000 L) of fluid. MHF designs have involved up to 620 000 lb (280 000 kg) of sand, 60 000 lb (27 000 kg) of sintered bauxite and 300 000 gal (1350 kL) of gel. Having management on-site to react to aberrations and vary the design has been important in operations.One Tlrrawarra Sandstone MHF has been unsuccessful (as predicted) and the other, on initial results, appears highly successful. The Patchawarra Formation MHF speared off into a coal but appears moderately successful. Long-term flow tests will provide definitive results.Encouraged by these initial results, the Joint Venture Partners have drilled two further wells in the Big Lake Field which await MHF treatment. The gas-in-place is estimated at about 1.5 trillion cubic feet (42.5 billion cubic metres). Three other tight gas prospects of similar size, Burley, McLeod and Kirby, have been identified. The size of this potential resource provides a strong incentive to attempt to make MHF treatments economically viable in the Cooper Basin.


2012 ◽  
Vol 52 (2) ◽  
pp. 660
Author(s):  
Mathew Nelson

The oil and gas industry in Australia consists of a range of complicated joint venture (JV) and processing arrangements. With a future price on carbon in the Clean Energy Future Legislation Package, parties are keen to understand their carbon liabilities where they have interests (both operated and non-operated), and the extent to which a price on carbon can be passed on to customers. Many oil and gas companies have been reporting greenhouse gas emissions from their facilities to the Department of Climate Change and Energy Efficiency since 2009 using the National Greenhouse and Energy Reporting System framework. Subsequently, numerous companies from the sector have developed greenhouse gas reporting systems linking into existing oil and gas production allocation systems. These companies are now turning their attention to using this information to allocate greenhouse gas emissions from their facilities to specific oil and gas sales products, as well as to JV partners. This extended abstract, which includes a case study, explores these developments and discusses the key considerations when allocating greenhouse gas emissions to specific products and JV partners. Also explored are the following questions: What assumptions need to be made at the facility level for emissions associated with extracting, processing and refining specific products ready for sale? How robust and defensible are these assumptions? How do you build these assumptions into a system or model that allocates emissions to different products? What processes do you then put in place to allocate emissions to specific JV partners, and what information will be reported to them and what quality and assurance processes need to be in place to provide comfort to your JV partners of the robustness of the numbers? How will the costs associated with carbon be allocated?


Sign in / Sign up

Export Citation Format

Share Document