The development of cuttings of the Washington navel orange to the stage of fruit set. I. The development of the rooted cutting

1961 ◽  
Vol 12 (6) ◽  
pp. 1050 ◽  
Author(s):  
CT Gates ◽  
D Bouma ◽  
H Groenewegen

The development of rooted cuttings of the Washington Navel orange through two cycles of growth is described, and the effects of phosphorus nutrition and the relative value of nitrate and ammonium as sources of nitrogen are assessed. Alternation of shoot and root development over the period of the experiment was observed. There appeared to be no build up of dry matter reserves in the plant tops before new shoot initiation, but rather a rhythmic distribution between root and shoot of the dry matter assimilated. The initiation of new shoots was followed by a rapid increase in leaf area, by an increase in dry matter per unit leaf area, by a rapid increase in whole plant dry weight, and by higher growth rates. In this latter respect, the behaviour of this woody perennial contrasts with the normal growth pattern of annuals, where the growth indices tend to fall with time. Phosphorus shortage delayed plant development, so leading to lower dry weight values in all plant parts. No differences in growth due to nitrate or ammonium as sources of nitrogen could be detected.

Helia ◽  
2001 ◽  
Vol 24 (35) ◽  
pp. 135-148
Author(s):  
Mohammed El Midaoui ◽  
Ahmed Talouizte ◽  
Benbella Mohamed ◽  
Serieys Hervé ◽  
Ait Houssa Abdelhadi ◽  
...  

SUMMARYAn experiment has been carried out in order to study the behaviour under mineral deficiency of three sunflower genotypes, a population variety (Oro 9) and two hybrids (Mirasol and Albena). Sunflower seedlings were submitted to five treatments: N deficiency (N0), P deficiency (P0), K deficiency (K0), N and K deficiency (N0K0) and a control. Plants were harvested when they reached 3-4 true pairs of leaves. Growth parameters measured (height, total leaf area, root length, root and shoot dry mater) were all significantly reduced by mineral deficiency. Leaf area was most reduced by N0 (-61%) and P0 (-56%). Total dry matter was most affected by N0 (-63%) and by N0K0 (-66%). Genotype comparisons showed that Oro 9 had the highest shoot dry matter while Albena had the lowest root dry matter. Effect of mineral deficiency on content and partitioning of N, P, K, Ca and Na was significant and varied according to treatments and among plant parts. Shoot dry weight was significantly correlated with root N content (r2=0.81) and root K content (r2=-0.61) for N0 and K0.


2012 ◽  
Vol 10 (1) ◽  
pp. 16-22 ◽  
Author(s):  
M. Z. U. Kamal ◽  
M. N. Yousuf

The investigation was carried out to evaluate the effect of different organic manures on turmeric with reference to vegetative growth, biomass production, rhizome yield and its attributes of turmeric (Curcuma longa L.). Turmeric showed better response to the application of organic manures. Plant with neem cake application had the taller plant (79.30 cm), maximum number of tillers per plant (5.40), leaf number (5.40), leaf area (44.09) leaf area index (0.429), fresh weight of halum ( 190.05g), fresh weight of root (49.13 g), fresh weight of rhizome per plant (256.21 g) and dry weight of halum (15.21g), dry weight of root (7.32 g), dry weight of rhizome per plant (40.35 g), total dry matter yield (6.85 t ha-1) than those received other types of manures. Moreover, yield attributes such as number of mother rhizomes per plant-1 (1.75), more number of primary rhizomes per plant-1 (5.19), secondary rhizomes per plant-1 (18.03) and tertiary rhizomes per plant (7.69) were also highly accelerated by neem cake application. Similarly, the same treatment expressed the best in terms of size of mother rhizome (7.69 cm), primary rhizome (21.86 cm) and secondary rhizomes (7.05 cm).All these parameters in cumulative contributed to  produce the highest estimated fresh rhizomes yield & cured rhizomes yield (29.48 t ha-1, 5.59 t ha-1 respectively). The highest curing percentage (20.28) was observed in T3 treatment having mustard cake@ 2.0 t/ha. Thus, organic manure like neem cake was best fitted natural fertilizer for turmeric cultivation.DOI: http://dx.doi.org/10.3329/agric.v10i1.11060The Agriculturists 2012; 10(1): 16-22


1956 ◽  
Vol 7 (2) ◽  
pp. 98 ◽  
Author(s):  
JN Black

Changes in the pre-emergence distribution of dry matter in subterranean clover (Trifolium subterraneum L.) variety Bacchus Marsh were followed at 21°C, using three sizes of seed and three depths of sowing, ½, 1¼, and 2 in. Decreasing seed size and increasing depth of sowing both reduce the weight of the cotyledons a t emergence. Seed of the three sizes were sown a t three depths in pot culture a t staggered intervals so that emergence was simultaneous. Dry weight in the early vegetative stage was proportional to seed size, and total leaf area and leaf numbers showed similar trends. Plants of each seed size grew at the same relative rate. No effect of depth of sowing could be detected, and this was shown to be due to the cotyledon area a t emergence being constant for any given seed size, regardless of varying depth of sowing and hence of cotyledon weight. It was concluded that seed size in a plant having epigeal germination and without endosperm is of importance: firstly, in limiting the maximum hypocotyl elongation and hence depth of sowing, and secondly, in determining cotyledon area. Cotyledon area in turn influences seedling growth, which is not affected by cotyledon weight. Once emergence has taken place, cotyledonary reserves are of no further significance in the growth of the plants.


1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


1989 ◽  
Vol 40 (2) ◽  
pp. 371 ◽  
Author(s):  
H Howie ◽  
J Lloyd

Flowering, fruit set and fruit growth of 'Washington Navel' orange fruit was monitored on 24-year-old Citrus sinensis trees on Sweet orange rootstocks that had been irrigated with either 5 or 20 mol m-3 NaCl for 5 years preceding measurements.Trees irrigated with high salinity water had reduced flowering intensities and lower rates of fruit set. This resulted in final fruit numbers for trees irrigated with 20 mol m-3 being 38% those of trees irrigated with 5 mol m-3 NaCl. Final fruit numbers were quantitatively related to canopy leaf area for both salinity treatments.Despite little difference between trees in terms of leaf area/fruit number ratio, slower rates of fruit growth were initially observed on high salinity trees. This effect was not apparent during the latter stages of fruit development. Consequently, fruit on trees irrigated with 20 mol m-3 NaCl grew to the same size as fruit on trees irrigated with 5 mol m-3 NaCl, but achieved this size at a later date. Measurements of Brix/acid ratios showed that fruit on high salinity trees reached maturity standards 25 days after fruit on low salinity trees.Unimpaired growth of fruit on high salinity trees during summer and autumn occurred, despite appreciable leaf abscission, suggesting that reserve carbohydrate was utilized for growth during this period. Twigs on high salinity trees had much reduced starch content at the time of floral differentiation in winter. Twig starch content and extent of floral differentiation varied in a similar way when examined as a function of leaf abscission. This suggests that reduced flowering and fruit set in salinized citrus trees is due to low levels of reserve starch, most of which has been utilized to support fruit growth in the absence of carbohydrate production during summer and autumn.


2016 ◽  
Vol 8 (1) ◽  
pp. 20 ◽  
Author(s):  
M. Bänziger ◽  
G. O. Edmeades ◽  
J. Bolaños

The amount of dry matter produced during various stages of corn growth is a important variable to be taken into consideration. However, the lack of drying facilities makes its measurement a difficult task in the fields. A simple method to convert the fresh weight of a crop in the field into dry weight, could be an answer to that problem. In this study, we calculated the relationship between fresh and dry weight of corn stovers, over several, growth, stages of eight corn cultivars of different vigour and maturity period, at two Mexican locations. The differences between cultivars were for percent stover dry weight (%SDW) most evident in the second half of the grain growth stage, when late cultivars showed less humidity than the early ones. The % SDW was regressed against the phenological developmental stage and expressed as a ratio against antesis (R, days to sampling /days to 50% antesis). The equations (R2 = 0.97 - 0.99) with best results were: Early maturing cultivars: %SDW = 12.6 + 0.94R2 + 1.68R4; Late: %SDW = 16.1 - 4.00 R2 + 3.36R4. There were no consistant differences among cultivars with different vigour levels, even though certain differences were noted among the locations and they were attributed to differences in relative humidity. We describe a protocol for determining the dry weight of corn stover by area unit (t/ha) when drying conditions are not available, by utilizing only a scale and a ruler.We also suggest a method to calculate percent dry matter for a real plant parts (including grain).


1976 ◽  
Vol 3 (4) ◽  
pp. 527 ◽  
Author(s):  
S Fukai ◽  
JH Silsbury

Subterranean clover communities were grown in temperature-controlled naturally lit glasshouses at 15, 20, 25 and 30�C. Dry matter yield, leaf area and the distribution of dry matter between plant parts were determined at about 14-day intervals for up to 130 days from planting. Leaf appearance, leaf death, leaf number and growth of laterals were observed for individual plants in the community over a similar time period. A logistic growth curve was found for each temperature and crop growth rate calculated from the equation fitted for each growth curve. The optimum temperature for growth was relatively high (20-25°C) when plants were young, but decreased during growth so that after 100 days total dry matter was inversely related to temperature over the range 15-30°C. Both the rate of leaf appearance and the rate of leaf death on the main stem were constant at each temperature during the experimental period and were directly related to temperature. The number of leaves per unit ground area was determined mainly by the rates of leaf appearance and leaf death on the main stem, since the contribution of laterals was small. The proportion of stem and petiole to total dry matter increased, and that of green leaf lamina decreased, with increase in total dry matter. Neither was markedly affected by temperature. An inverse relationship between specific leaf area and temperature resulted in a lower ratio of leaf area to total dry matter at 15°C compared with that at 20, 25 or 30°C.


1989 ◽  
Vol 16 (3) ◽  
pp. 265 ◽  
Author(s):  
TL Setter ◽  
H Greenway ◽  
T Kupkanchanakul

Submergence of rice in water at low CO2 concentrations was studied in phytotron experiments using plants in the 3rd to 4th leaf stage. Cultivars known to differ in tolerance to complete submergence were adversely affected by the same mechanisms but to a different degree. Submergence for 4-12 days either reduced dry weight production of the whole plant by 6 to 10 fold or even resulted in a loss of dry weight. Nevertheless, the emerging leaf elongated, and both ethanol insoluble material and protein content increased with time. These increases were associated with translocation of dry matter and nitrogen from expanded to expanding leaves. Submergence also reduced concentrations of soluble sugars and starch in all plant parts by 4 to 12 fold. In contrast, concentrations of potassium and free amino acids in shoots were either the same or, in the case of the emerging leaf, higher than in plants which were not submerged. These results indicate (i) these solutes were not limiting growth and (ii) the tissues retained their semipermeability to these solutes during submergence. Insufficient capacity of root metabolism in submerged plants was indicated by low rates of respiration, which persisted in the presence of glucose, and by a low ability to consume ethanol. A model is presented on the adverse effects of submergence of rice which considers possible interactions between CO2, low O2 and high ethylene concentrations.


1970 ◽  
Vol 34 (1) ◽  
pp. 67-73
Author(s):  
M SH Islam ◽  
MSU Bhuiya ◽  
AR Gomosta ◽  
AR Sarkar ◽  
MM Hussain

Pot experiments were conducted during T. aman 2001 and 2002 (wet season) at Bangladesh Rice Research Institute (BRRI) in net house. Hybrid variety Sonarbangla-1 and inbred modern variety BRRI dhan-31 were used in both the seasons and BRRI hybrid dhan-l was used in 2002. The main objective of the experiments was to compare the growth and yield behaviour of hybrid and inbred rice varieties under controlled condition. In 2001, BRRI dhan-3l had about 10-15% higher plant height, very similar tillers/plant, 15-25% higher leaf area at all days after transplanting (DAT) compared to Sonarbangla-1. Sonarbangla- 1 had about 40% higher dry matter production at 25 DAT but had very similar dry matter production at 50 and 75 DAT, 4-11% higher rooting depth at all DATs, about 22% higher root dry weight at 25 DAT, but 5-10% lower root dry weight at 50 and 75 DAT compared to BRRI dhan-31. The photosynthetic rate was higher (20 μ mol m-2/sec-1) in BRRI dhan-3l at 35 DAT (maximum tillering stage) but at 65 DAT, Sonarbangla-l had higher photosynthetic rate of 19.5 μ mol m-2 sec-1. BRRI dhan-3l had higher panicles/plant than Sonarbangla-1, but Sonarbangla-1 had higher number of grains/panicle, 1000-grain weight and grain yield than BRRI dhan-31. In 2002, BRRI dhan-31 had the highest plant height at 25 DAT, but at 75 DAT, BRRI hybrid dhan-l had the highest plant height. Sonarbangla-1 had the largest leaf area at 25 and 50 DAT followed by BRRI dhan-31, but at 75 DAT, BRRI dhan-31 had the largest leaf area. The highest shoot dry matter was observed in BRRI dhan-31 followed by Sonarbangla-1 at all DATs. Sonarbangla-1 had the highest rooting depth and root dry weight at all DATs. BRRI dhan-31 gave the highest number of panicles/plant followed by Sonarbangla-I, BRRI hybrid dhan-l had the highest grains/panicle followed by BRRI dhan-31 and Sonarbangla-I had the highest 1000-grain weight followed by BRRI dhan-31. The highest amount of grains/plant (34.6 g) was obtained from BRRI dhan-31. Key Words: Shoot dry matter; root dry weight; leaf area; photosynthesis; grain yield. DOI: 10.3329/bjar.v34i1.5755Bangladesh J. Agril. Res. 34(1) : 67-73, March 2009


2017 ◽  
Vol 27 (2) ◽  
pp. 248-256 ◽  
Author(s):  
Andrew L. Thomas ◽  
Jackie L. Harris ◽  
Elijah A. Bergmeier ◽  
R. Keith Striegler

An evaluation of establishment techniques and rootstocks for ‘Chambourcin’ hybrid grape (Vitis sp.) was conducted 2009–12. Our objective was to evaluate four establishment methods and their interactions with grafted and ungrafted vines in terms of vine morphology and early fruit production under southwest Missouri conditions. The study was established in May 2009, as a factorial experiment comparing four establishment methods (open-trained without protection—two shoots, grow tube protected—two shoots, paperboard carton protected—two shoots, and fan-trained without protection—six shoots) across two vine types (own-rooted and grafted to ‘Couderc 3309’ hybrid grape rootstock). All vines in four of 12 field replications were destructively harvested near the conclusion of the first growing season, with leaf area and total vine dry matter determined. In years 3 and 4, yield, fruit composition, and vegetative growth were determined from the eight remaining replications. The fan training method increased leaf area and total vine dry matter compared with the other methods, but none of the establishment techniques affected fruit yield. Trunks that were tube protected had longer internodes, smaller diameter, and less dry matter, whereas both protection devices reduced glyphosate injury. Vine type (grafted and ungrafted) did not impact total leaf area or dry weight during the establishment year, but grafted vines had increased trunk and root shank dry weights compared with own-rooted vines. Grafted vines produced greater fruit yield in 2012. The fan training method required more labor to execute; although it was successful at increasing leaf area and root dry weight, it increased susceptibility to glyphosate injury and did not promote increased precocity or early fruit yield.


Sign in / Sign up

Export Citation Format

Share Document