Yellow lupin (Lupinus luteus) tolerates waterlogging better than narrow-leafed lupin (L. angustifolius) IV. Root genotype is more important than shoot genotype

2000 ◽  
Vol 51 (6) ◽  
pp. 729 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
R. Munns ◽  
M. Dracup

To understand how yellow lupin tolerates waterlogging better than narrow-leafed lupin, we investigated the roles of the roots and the shoots of these species. Reciprocal- and self-grafted combinations (scion = shoot/rootstock) of yellow and narrow-leafed lupin were made at the 2-leaf stage and waterlogged 45 days later (8–10 leaf stage). Responses to waterlogging were examined at the end of waterlogging and following a recovery period of 14 days.Waterlogging of reciprocal and self-grafted plants reduced total plant dry weight by 15–58% compared with non-waterlogged controls. These reductions were greater when the rootstock was narrow-leafed rather than yellow lupin, and were similar for the roots and shoots. Waterlogging increased dry weight of hypocotyl roots in most grafting combinations (by 2–19-fold), but grafts with narrow-leafed lupin scions produced almost twice the hypocotyl root length of grafts with yellow lupin scions. During the waterlogging period, leaf gas exchange decreased by 16–74% in all grafting combinations except in narrow-leafed lupin scion/yellow lupin rootstock where it increased by 17–30%. During waterlogging, stem water potential decreased and leaf osmotic pressure increased. These changes compensated one another and consequently there was no effect on bulk leaf turgor. After 14 days recovery, water relations returned to initial values. Tolerance of the whole plant to waterlogging was influenced more by the root genotype than the shoot genotype. However, production of hypocotyl roots in response to waterlogging was related to the shoot genotype rather than the root genotype.

2000 ◽  
Vol 51 (6) ◽  
pp. 701 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

We studied the adaptation of narrow-leafed lupin (Lupinus angustifolius) and yellow lupin (L. luteus) to waterlogging because yellow lupin may have potential as a new legume crop for coarse-textured, acidic, waterlogging-prone areas in Western Australia. In a controlled environment, plants were waterlogged for 14 days at 28 or 56 days after sowing (DAS). Plants were more sensitive when waterlogged from 56 to 70 DAS than from 28 to 42 DAS, root growth was more sensitive than shoot growth, and leaf expansion was more sensitive than leaf dry weight accumulation. Waterlogging reduced the growth of narrow-leafed lupin (60–81%) more than that of yellow lupin (25–56%) and the response was more pronounced 2 weeks after waterlogging ceased than at the end of waterlogging. Waterlogging arrested net root growth in narrow-leafed lupin but not in yellow lupin, so that after 2 weeks of recovery the root dry weight of yellow lupin was the same as that of the control plants but in narrow-leafed lupin it was 62% less than the corresponding control plants. Both species produced equal amounts of hypocotyl root when waterlogged from 28 to 42 DAS but yellow lupin produced much greater amounts than narrow-leafed lupin when waterlogged from 56 to 70 DAS.


2000 ◽  
Vol 51 (6) ◽  
pp. 721 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

This study determined whether the tolerance of yellow lupin to waterlogging, observed in experiments in controlled environments, occurs under field conditions. Of particular interest is the impact of waterlogging on the distribution of roots because lupin is exposed to terminal drought in the south of Western Australia, which in itself can have a profound effect on yield. A field experiment was undertaken in the central grain-growing region of Western Australia near Beverley using hydraulically isolated plots to impose and remove waterlogging in a duplex soil. The responses of root and shoot growth of narrow-leafed and yellow lupin to waterlogging in the field were similar to those observed in the controlled environment experiments. In the field experiment, waterlogging had no effect on seed yield of yellow lupin but reduced it by 61% in narrow-leafed lupin. Waterlogging more than halved the dry weight of narrow-leafed lupin but reduced it by only 19% in yellow lupin. In yellow lupin, yield was 3.4 t/ha with waterlogging and 3.8 t/ha without waterlogging, compared with 1.4 t/ha with waterlogging and 3.5 t/ha without waterlogging in narrow-leafed lupin. Waterlogging had no effect on the harvest index of yellow lupin (0.26) but reduced it from 0.36 to 0.31 in narrow-leafed lupin. The larger effect of waterlogging on the yield of narrow-leafed lupin was mainly attributable to fewer pods. Net root growth ceased during waterlogging in both species. After waterlogging, roots of yellow lupin grew at a similar rate to the controls, whereas roots of narrow-leafed lupin grew at a much slower rate than the controls. Waterlogging halved the root density of yellow lupin at 25 cm depth and almost eliminated the roots of narrow-leafed lupin at this depth. After waterlogging, root production in the surface 10 cm increased to about 0.5 cm/cm 3 in yellow lupin but to 0.2 cm/cm 3 in narrow-leafed lupin. At depth (>20 cm), roots of waterlogged yellow lupin continued to grow while those of waterlogged narrow-leafed lupin grew little, if at all. Yellow lupin tolerated waterlogging in the field better than narrow-leafed lupin because it re-established its root system at depth after waterlogging was removed and it produced more fertile pods.


2000 ◽  
Vol 51 (6) ◽  
pp. 711 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

Yellow lupin (Lupinus luteus) may have potential as a legume crop in waterlogging-prone areas of Western Australia. To elucidate the physiological response of yellow lupin and the widely grown narrow-leafed lupin (L. angustifolius) to transient waterlogging we conducted experiments in controlled environments. Narrow-leafed lupin and yellow lupin were grown in pots and waterlogged for 14 days from 28 to 42, or 56 to 70 days after sowing, each being followed by a 14-day recovery period. Root and shoot growth responses, leaf gas exchange, water relations, and N accumulation were assessed. During the period of waterlogging, net nitrogen accumulation ceased in both species at both ages. During recovery, yellow lupin accumulated more nitrogen than narrow-leafed lupin. Waterlogging reduced leaf gas exchange more with older plants than with younger plants, and more so with narrow-leafed lupin than yellow lupin. Some components of leaf gas exchange, particularly leaf conductance, were reduced by up to 80%. Waterlogging had no effect on leaf water potential of yellow lupin but reduced it in narrow-leafed lupin, from about –450 to –1100 kPa, especially during the recovery period. Yellow lupin was more adapted to transient waterlogging than narrow-leafed lupin because it maintained its leaf water status, it accumulated more nitrogen during recovery, and its photosynthetic activity recovered quickly afterremoval of waterlogging.


2000 ◽  
Vol 51 (1) ◽  
pp. 113 ◽  
Author(s):  
A. Liu ◽  
T. J. Ridsdill-Smith ◽  
D. C. Nicholas

Redlegged earth mite (Halotydeus destructor) causes feeding damage to some pulse species at the seedling stage. To quantify the effect of this damage on subsequent plant growth and development, an experiment was conducted in the glasshouse using yellow lupin, Lupinus luteus cv. Motiv, which is highly susceptible to the mites. After emergence, plants were infested with 0, 100, 150, and 250 mites/plant, collected from the field. Fourteen days after application, mites were removed. Damage to plants was estimated at seedling stage, flowering time, and maturity. At seedling stage (on Day 14), feeding damage scores to cotyledons and true leaves were greater at higher mite densities. Damaged plants produced fewer nodules, fewer lateral roots, and less dry weight than the control. On Day 35, severely damaged plants failed to recover and on the surviving plants, cotyledons and true leaves died earlier than on the plants without damage. On Day 78, when plants were flowering, the surviving plants produced fewer nodules and branches, and less dry weight per plant than the control. The flowering time of plants with the mite treatments was delayed by up to 6 days compared with the controls. The final shoot dry weight, pod number, seed number, and seed yield per pot were significantly reduced by the mite treatments. Feeding by H. destructor on seedlings of yellow lupin caused a reduction in seed yield of 58% at the highest mite density treatment. This significant economic loss needs to be confirmed under field conditions, but it signifies the need to develop appropriate control measures for this pest.


1996 ◽  
Vol 121 (4) ◽  
pp. 656-659 ◽  
Author(s):  
Michael A. Grusak ◽  
Brian W. Stephens ◽  
Donald J. Merhaut

Snap beans (Phaseolus vulgaris L.) are a food source that can contribute to dietary Ca requirements in humans. Factors which might enhance the concentration of Ca in snap bean pods have been investigated by measuring whole-plant net Ca influx, whole-plant Ca partitioning, and various growth parameters in two snap bean cultivars—Hystyle and Labrador—that differ in pod Ca concentration. Plants were grown hydroponically under controlled environmental conditions while being provided adequate quantities of Ca. The concentration of Ca in pods (dry weight basis) was 52% higher in `Hystyle', relative to `Labrador', but net Ca influx throughout crop development or total plant Ca content at three stages of development were similar in both cultivars, demonstrating that pod Ca concentration differences were not due to differences in total plant Ca influx. However, `Hystyle' partitioned more total plant Ca to pods, relative to `Labrador'. Calcium flux analysis also revealed that daily rates of whole-plant net Ca influx gradually declined throughout the period of pod growth in both cultivars; this decline was not related to whole-plant water influx. These results suggest that enhancements in whole-plant net Ca influx during pod growth and/or enhancements in the xylem transport of absorbed Ca to developing pods could increase the Ca concentration of snap bean pods.


1969 ◽  
Vol 72 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Maurice Eddowes

SUMMARYThere was no measurable competition among plants before the four-leaf stage of growth. Competition among plants after the four-leaf stage reduced their average weight and their capacity to store assimilates in the ear after anthesis. As competition intensified total dry-matter yield at lower plant populations approached progressively the yield at the highest plant population. Total whole plant yield per unit area showed an asymptotic response to increase in plant population. Ear yield per unit area showed a parabolic response.On a unit leaf area basis, the top three leaf laminae apparently contributed about 66% more to cob (rachis + grain) dry weight than the three adjacent leaf laminae immediately below them.Ear weight per plant was reduced, either (a) by increasing plant population, or (b) by partial defoliation, or (c) by both treatments. In situation (c), i.e. where high plant populations were partially defoliated, cob weight per plant was apparently determined by the amount of available assimilates, and not by ear storage capacity.


1993 ◽  
Vol 11 (2) ◽  
pp. 59-63
Author(s):  
Janet C. Henderson-Cole ◽  
Fred T. Davies

Abstract Acclimation to drought was studied in the low-maintenance (Rosa hybrida) ‘Ferdy’ and ‘Pink Meidiland’, and the high-maintenance ‘Double Delight’ and ‘Paradise’. All plants were acclimated to drought with five consecutive, 4-day drought cycles, followed by a 2-day irrigation recovery period after the fifth drought cycle. Low-maintenance cultivars experienced less drought stress, as evidenced by higher leaf water potential, whole plant transpiration rate (E), relative water content, and leaf conductance on the final day of drought stress cycles. Morphologically, the low-maintenance cultivars had greater leaf cuticle weight than high-maintenance cultivars. Differences in the density and size of stomata and epidermal cells were not related to drought response. Low-maintenance cultivars had a smaller evaporative surface (smaller total leaf areas, smaller individual leaves, and reduced shoot dry weights). However, root : shoot ratios (root dry weight : top dry weight) and leaf area ratios (total leaf area : total plant dry weight) were comparable. Drought acclimation caused a greater reduction in osmotic potential of low-maintenance roses during the recovery period. Apparently, drought resistance in the low-maintenance roses was associated with increased cuticle thickness, reduced evaporative surface, and smaller individual leaves.


1968 ◽  
Vol 8 (2) ◽  
pp. 288-306 ◽  
Author(s):  
G. C. Hufbauer

In the late nineteenth and early twentieth centuries, several Punjab Settlement Officers attempted to estimate food consumption rates. These estimates, based on direct observation and ad hoc guesses, were made partly out of academic curiosity, but more urgently, as an aid in establishing the land revenue (i.e., tax) rates. The pre-1926 estimates are summarized in Table I, expressed in pounds of wheat and other foodgrain consumption per person per year1. Broadly speaking, the later, more systemtic observers (e.g., Sir Ganga Ram and C. B. Barry), found lower consumption levels than the earlier observers. It was generally accepted that the rural populace ate better than urban dwellers. Despite the ingenuity of the early Settlement Officers, their compiled estimates suffer from all the difficulties of haphazard small sample observation. Given the revenue purpose of the estimates, they may be biased towards the able-bodied, economically active, population. Further, the very early estimates may have confused dry weight with cooked weight, including water.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 751-757 ◽  
Author(s):  
David T. Patterson ◽  
Maxine T. Highsmith ◽  
Elizabeth P. Flint

Cotton, spurred anoda, and velvetleaf were grown in controlled-environment chambers at day/night temperatures of 32/23 or 26/17 C and CO2concentrations of 350 or 700 ppm. After 5 weeks, CO2enrichment to 700 ppm increased dry matter accumulation by 38, 26, and 29% in cotton, spurred anoda, and velvetleaf, respectively, at 26/17 C and by 61, 41, and 29% at 32/23 C. Increases in leaf weight accounted for over 80% of the increase in total plant weight in cotton and spurred anoda in both temperature regimes. Leaf area was not increased by CO2enrichment. The observed increases in dry matter production with CO2enrichment were caused by increased net assimilation rate. In a second experiment, plants were grown at 350 ppm CO2and 29/23 C day/night for 17 days before exposure to 700 ppm CO2at 26/17 C for 1 week. Short-term exposure to high CO2significantly increased net assimilation rate, dry matter production, total dry weight, leaf dry weight, and specific leaf weight in comparison with plants maintained at 350 ppm CO2at 26/17 C. Increases in leaf weight in response to short-term CO2enrichment accounted for 100, 87, and 68% of the observed increase in total plant dry weight of cotton, spurred anoda, and velvetleaf, respectively. Comparisons among the species showed that CO2enrichment decreased the weed/crop ratio for total dry weight, possibly indicating a potential competitive advantage for cotton under elevated CO2, even at suboptimum temperatures.


2002 ◽  
Vol 57 (9-10) ◽  
pp. 811-816 ◽  
Author(s):  
Yasufumi Katagiri ◽  
Yasuyuki Hashidoko ◽  
Satoshi Tahara

Quantification of the flavonoids in yellow lupin (Lupinus luteus; Leguminosae) seedlings revealed that a flavone glucoside, 7-O-β-(2-O-β-rhamnosyl)glucosyl-4′,5,7-trihydroxyflavone (apigenine 7-O-β-neohesperidoside), is rich in the epicotyl and cotyledon. In hypocotyls and roots, 8-C-β-glucosyl-4′,5,7-trihydroxyisoflavone (genistein 8-C-β-glucoside) was a predominant flavonoid constituent. The roles of the localized flavonoids are briefly discussed relating to defense against biotic and abiotic external stresses.


Sign in / Sign up

Export Citation Format

Share Document