Effect of seedling damage by redlegged earth mite, Halotydeus destructor, on subsequent growth and development of yellow lupin, Lupinus luteus, in the glasshouse

2000 ◽  
Vol 51 (1) ◽  
pp. 113 ◽  
Author(s):  
A. Liu ◽  
T. J. Ridsdill-Smith ◽  
D. C. Nicholas

Redlegged earth mite (Halotydeus destructor) causes feeding damage to some pulse species at the seedling stage. To quantify the effect of this damage on subsequent plant growth and development, an experiment was conducted in the glasshouse using yellow lupin, Lupinus luteus cv. Motiv, which is highly susceptible to the mites. After emergence, plants were infested with 0, 100, 150, and 250 mites/plant, collected from the field. Fourteen days after application, mites were removed. Damage to plants was estimated at seedling stage, flowering time, and maturity. At seedling stage (on Day 14), feeding damage scores to cotyledons and true leaves were greater at higher mite densities. Damaged plants produced fewer nodules, fewer lateral roots, and less dry weight than the control. On Day 35, severely damaged plants failed to recover and on the surviving plants, cotyledons and true leaves died earlier than on the plants without damage. On Day 78, when plants were flowering, the surviving plants produced fewer nodules and branches, and less dry weight per plant than the control. The flowering time of plants with the mite treatments was delayed by up to 6 days compared with the controls. The final shoot dry weight, pod number, seed number, and seed yield per pot were significantly reduced by the mite treatments. Feeding by H. destructor on seedlings of yellow lupin caused a reduction in seed yield of 58% at the highest mite density treatment. This significant economic loss needs to be confirmed under field conditions, but it signifies the need to develop appropriate control measures for this pest.

2000 ◽  
Vol 40 (5) ◽  
pp. 715 ◽  
Author(s):  
A. Liu ◽  
T. J. Ridsdill-Smith

Damage caused by redlegged earth mite to seedlings of 6 pulse species and its effect on subsequent plant growth and grain yield were examined under controlled and field conditions. Seedling damage caused by redlegged earth mite affected subsequent plant growth and reduced seed yield, but the responses varied among different pulse species. Field pea and yellow lupin were the most susceptible at seedling stage and flowering, but only yellow lupin suffered significant reduction in grain yield (30%) in the field. Narrow-leafed lupin suffered moderate damage, faba bean slight damage, while chickpea and lentil suffered little or no damage. The practical implications of these results are discussed.


2000 ◽  
Vol 51 (6) ◽  
pp. 701 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

We studied the adaptation of narrow-leafed lupin (Lupinus angustifolius) and yellow lupin (L. luteus) to waterlogging because yellow lupin may have potential as a new legume crop for coarse-textured, acidic, waterlogging-prone areas in Western Australia. In a controlled environment, plants were waterlogged for 14 days at 28 or 56 days after sowing (DAS). Plants were more sensitive when waterlogged from 56 to 70 DAS than from 28 to 42 DAS, root growth was more sensitive than shoot growth, and leaf expansion was more sensitive than leaf dry weight accumulation. Waterlogging reduced the growth of narrow-leafed lupin (60–81%) more than that of yellow lupin (25–56%) and the response was more pronounced 2 weeks after waterlogging ceased than at the end of waterlogging. Waterlogging arrested net root growth in narrow-leafed lupin but not in yellow lupin, so that after 2 weeks of recovery the root dry weight of yellow lupin was the same as that of the control plants but in narrow-leafed lupin it was 62% less than the corresponding control plants. Both species produced equal amounts of hypocotyl root when waterlogged from 28 to 42 DAS but yellow lupin produced much greater amounts than narrow-leafed lupin when waterlogged from 56 to 70 DAS.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1159g-1159
Author(s):  
Abdulrhman I. Al-hemaid ◽  
David S. Koranski

Petunia `Red Flash', Vinca `Little Blanch', Pansy `Magestic Giant Purple', and Impatien `Super Elfin Red' plugs were held in the greenhouse after they reached the saleable size in 200, 406, 512, and 800 for 1 to 3 weeks Pansy plugs were held in coolers at 40, 50, or 60F under fluorescent light for 16 hrs photoperiod for 1 to 3 weeks in 200, 406, 512, or 800 plug trays. All plants ware transplanted weekly and were grown in the greenhouse until flowering and data were collected. For plants bald in the greenhouse, plants were affected by transplanting time. As the holding time increased the final height, diameter, flower number, and fresh and dry weight of plants decreased. The flowering time was delayed by increase the holding time, regardless of plant variety, As cell size decreased, plant height, diameter, flower number, and fresh and dry weight decreased. For plants held in the coolers, the flowering time was delayed by the transplant time, regardless of cooler temperatures Plant quality was not affected by the treatment. The height, diameter, flowers number, and fresh and dry weight of plants showed a little effects by temperatures, cell size, and transplanting time.


1992 ◽  
Vol 43 (3) ◽  
pp. 623
Author(s):  
N Thurling ◽  
R Kaveeta

Agronomic characteristics of two groups of early flowering Brassica napus lines and their respective parents were compared at East Beverley in the Western Australian wheatbelt. These lines had been derived through two generations of backcrossing and subsequent selfing from crosses of the B. napus cultivar Wesbrook (recurrent parent) with an early flowering B. napus line RU2 and an even earlier flowering B. campestris population Chinoli C42. Lines selected for this experiment had flowered earliest in a previous controlled environment experiment. Only RU2 and one WesbrookxRU2 line (IB72) had significantly higher yields than Wesbrook (149% and 166% respectively), and one Wesbrookxchinoli C42 line was the only line to have a significantly lower yield than Wesbrook. None of the lines had significantly higher yields than their respective non-recurrent parents. Although RU2 and IB72 flowered much earlier than Wesbrook, there was no significant relationship between flowering time and seed yield over all lines. Lines which were the earliest to commence stem elongation tended to have higher seed yields. However, of all the growth and development characters measured, the biological yield and the dry weight increment between commencement of flowering and maturity were most closely related to seed yield. RU2 and IB72 accumulated far more dry matter over the post-anthesis period than Wesbrook and all other lines except another WesbrookxRU2 line. The superior post-anthesis growth of RU2 and IB72 may simply be a manifestation of the longer period available for growth under more favourable environmental conditions or deeper roots extracting more water from a greater depth. However, since there was no relationship between flowering time and the post-anthesis dry matter increment, it seems more likely that IB72 has received genes for superior post-anthesis growth as well as those determining early flowering from RU2. Given the rapid decline in soil moisture availability during post-anthesis development in this environment, these genes may affect post-anthesis growth through determining a greater capacity for drought avoidance. The implications of these results are discussed with particular reference to the breeding of higher yielding B. napus cultivars for lower rainfall environments.


1995 ◽  
Vol 46 (5) ◽  
pp. 1091 ◽  
Author(s):  
TJ Ridsdill-Smith

Responses of redlegged earth mite (Halotydeus destructor) to seedlings of three resistant and four susceptible varieties of subterranean clover (Trifolium subterraneum) were measured after 7 or 14 days in pot experiments in the glasshouse. With a single variety/pot, mites on resistant varieties (DGI007, EP145SubD and Rutherglen B) produced 45% of the progeny that were produced by mites on the susceptible varieties (89838G, Dalkeith, Junee and 70088B). Number of stages completed and survival were little affected by varieties. Feeding damage (silvering of cotyledons) on resistant varieties averaged 45% of that on susceptible varieties with a single varietylpot. H. destructor fed less on resistant varieties in choice than in single variety experiments. On Junee and 89838G seedlings, feeding damage was similar to that on other susceptible varieties, but there were about half as many H. destructor progeny as on Dalkeith and 70088B. Mites laid more eggs on soil away from Junee plants, compared to the other three susceptible varieties. Different factors adversely affected the number of progeny produced on resistant varieties and on Junee.


2000 ◽  
Vol 51 (6) ◽  
pp. 721 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

This study determined whether the tolerance of yellow lupin to waterlogging, observed in experiments in controlled environments, occurs under field conditions. Of particular interest is the impact of waterlogging on the distribution of roots because lupin is exposed to terminal drought in the south of Western Australia, which in itself can have a profound effect on yield. A field experiment was undertaken in the central grain-growing region of Western Australia near Beverley using hydraulically isolated plots to impose and remove waterlogging in a duplex soil. The responses of root and shoot growth of narrow-leafed and yellow lupin to waterlogging in the field were similar to those observed in the controlled environment experiments. In the field experiment, waterlogging had no effect on seed yield of yellow lupin but reduced it by 61% in narrow-leafed lupin. Waterlogging more than halved the dry weight of narrow-leafed lupin but reduced it by only 19% in yellow lupin. In yellow lupin, yield was 3.4 t/ha with waterlogging and 3.8 t/ha without waterlogging, compared with 1.4 t/ha with waterlogging and 3.5 t/ha without waterlogging in narrow-leafed lupin. Waterlogging had no effect on the harvest index of yellow lupin (0.26) but reduced it from 0.36 to 0.31 in narrow-leafed lupin. The larger effect of waterlogging on the yield of narrow-leafed lupin was mainly attributable to fewer pods. Net root growth ceased during waterlogging in both species. After waterlogging, roots of yellow lupin grew at a similar rate to the controls, whereas roots of narrow-leafed lupin grew at a much slower rate than the controls. Waterlogging halved the root density of yellow lupin at 25 cm depth and almost eliminated the roots of narrow-leafed lupin at this depth. After waterlogging, root production in the surface 10 cm increased to about 0.5 cm/cm 3 in yellow lupin but to 0.2 cm/cm 3 in narrow-leafed lupin. At depth (>20 cm), roots of waterlogged yellow lupin continued to grow while those of waterlogged narrow-leafed lupin grew little, if at all. Yellow lupin tolerated waterlogging in the field better than narrow-leafed lupin because it re-established its root system at depth after waterlogging was removed and it produced more fertile pods.


2015 ◽  
Vol 66 (9) ◽  
pp. 938 ◽  
Author(s):  
T. J. Ridsdill-Smith ◽  
C. C. Pavri

The use of a TIMERITE® spring spray to control redlegged earth mite (RLEM), Halotydeus destructor (Tucker) (Acari: Penthaleidae), in annual pastures was evaluated on farms across Australia. RLEM populations in autumn in the treatments sprayed in spring 1998 and 1999 were 97% lower in 1999 and 97% in 2000 in the western region (Western Australia), and 93% lower in 1999 and 93% in 2000 in the eastern region (Victoria, New South Wales and South Australia). At sites in the west, control of RLEM resulted in significant increases in subterranean clover seed yield in 1999 and in clover seedling numbers in autumn 1999 and 2000. Penthaleus major (blue oat mite) populations in autumn were 60% lower in sprayed treatments, but Sminthurus viridis (lucerne flea) populations were not affected. Differences in weather between the west (where there is a hot, dry summer) and the east (where temperature and rainfall regimes are more variable in spring and early summer) seem to cause greater RLEM control and greater benefits in subterranean clover seed yield and seedling numbers with a spring spray in the west.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1336-1339 ◽  
Author(s):  
Lee Ann Pramuk ◽  
Erik S. Runkle

The photosynthetic daily light integral (DLI) dramatically increases during the spring when the majority of bedding plants are commercially produced. However, the effects of DLI on seedling growth and development have not been well characterized for most bedding plant species. Our objectives were to quantify the effects of DLI on growth and development of Celosia, Impatiens, Salvia, Tagetes, and Viola during the seedling stage and determine whether there were any residual effects of DLI on subsequent growth and development after transplant. Seedlings were grown in growth chambers for 18 to 26 days at 21 °C with a DLI ranging from 4.1 to 14.2 mol·m–2·d–1. Average seedling shoot dry weight per internode (a measure of quality) increased linearly 64%, 47%, 64%, and 68% within this DLI range in Celosia, Impatiens, Tagetes, and Viola, respectively. Seedlings were then transplanted to 10-cm containers and grown in a common environment (average daily temperature of 22 °C and DLI of 8.5 mol·m–2·d–1) to determine subsequent effects on plant growth and development. Flowering of Celosia, Impatiens, Salvia, Tagetes, and Viola occurred 10, 12, 11, 4, and 12 days earlier, respectively, when seedlings were previously grown under the highest DLI compared with the lowest. Except for Viola, earlier flowering corresponded with the development of fewer nodes below the first flower. Flower bud number and plant shoot dry weight at first flowering (plant quality parameters) decreased as the seedling DLI increased in all species except for flower number of Tagetes. Therefore, seedlings grown under a greater DLI flowered earlier, but plant quality at first flowering was generally reduced compared with that of seedlings grown under a lower DLI.


HortScience ◽  
2001 ◽  
Vol 36 (5) ◽  
pp. 905-908
Author(s):  
Audrey I. Gerber ◽  
Karen I. Theron ◽  
Gerard Jacobs

Inflorescence initiation in Protea cv. Lady Di (P. magnifica Link × P. compacta R. Br.) occurs predominantly on the spring growth flush when it is subtended by one or more previous growth flushes. Mature, over-wintering leaves are essential for induction of flowering in `Lady Di', and are also crucial to the early stages of inflorescence initiation and differentiation. Defoliation before elongation of the spring growth flush was complete prevented flowering, and shoots either remained vegetative or produced inflorescences that aborted. Levels of carbohydrates in the stem and leaves of overwintering shoots were low, and early growth and development of both the spring flush and inflorescence were, therefore, supported by current photosynthates from the mature leaves on the overwintering shoot. Likewise, reserve carbohydrates available in the flowering shoot were insufficient to account for the rapid increase in dry weight during the major portion of growth of the spring flush and inflorescence. This increase occurred after elongation of the spring flush was complete and was supported by current photosynthates from the leaves of the spring flush. Defoliation treatments that did not prevent inflorescence initiation had no effect on inflorescence development or on flowering time.


2021 ◽  
Vol 4 (1) ◽  
pp. 936-945
Author(s):  
Vu Tien Binh ◽  
Sorgan S. K. Tai

The study was conducted to evaluate the germination, physiological responses, yield-related traits, and seed yield of three mungbean varieties, viz. DXVN7, DXVN5, and DX11, under waterlogging coditions in the 2019 Summer. In experiment 1, the seeds of the three mungbean varieties were immersed in distilled water in Petri dishes for 12, 24, 36, 48, and 72h. Afterwards, water was removed and the percentage of germinated seeds was calculated at 84h after sowing. In experiment 2, plants were waterlogged at the seedling stage (25 days after germination) for 3, 6, and 9 days. Waterlogging depth was maintained at 3cm above the soil surface. Physiological traits were determined at the recovery period after termination of waterlogging (45 days after germination). The results showed that waterlogging significantly decreased germination percentages, plant height, root dry weight, leaf relative water content (RWC), SPAD value, Fv/Fm index, leaf photosynthesis, total dry weight, and seed yield of all varieties. Germination percentages at 12 and 24h of waterlogging were not significantly affected, whereas germination was significantly reduced at up to 36h of waterlogging. Seventy-two hours of waterlogging caused failure in germination. Nine days of waterlogging at the seedling stage adversely affected the physiological traits and seed yield of the mungbean varieties with 31% of yield reduction. Meanwhile, plants grew better at 3 days of waterlogging. Among the three varieties, DXVN7 showed the best adaptability under waterlogging conditions, attaining the highest seed germination and yield.


Sign in / Sign up

Export Citation Format

Share Document