scholarly journals Effect of Feefing Protected Lipid on the Uptake of Precursors of Milk Fat by the Bovine Mammary Gland

1973 ◽  
Vol 26 (5) ◽  
pp. 1201 ◽  
Author(s):  
JM Gooden ◽  
AK Lascelles

The feeding of protected lipid to lactating dairy cows resulted in a substantial increase in the proportion of fatty acid 18:2 and a decrease in fatty acids 4:0 to 16:0 in milk fat.

1951 ◽  
Vol 2 (2) ◽  
pp. 158 ◽  
Author(s):  
GL McClymont

Studies are reported on the volatile fatty acid (V.F.A.) metabolism of sheep and bovines with particular reference to the association between (i) ingestion of food and ruminal levels of V.F.A.s and arterial levels of acetic acid and (ii) the utilization of arterial acetic acid by the bovine mammary gland and the association between this utilization and the proportion of lower fatty acids (Reichert-Meissl value) in the milk fat. Ruminal levels of V.F.A. and arterial levels of acetic acid were found to be similar in cattle and sheep, and similar to those reported by earlier workers for sheep. There was a close association between changes in ruminal V.F.A. and arterial acetic acid levels. Arterial acetic acid levels were found on the feeds studied to reach a maximum value of 8-14 mg. per cent. by 2-5 hours after feeding, declining to 5-8 mg. per cent. by 8 hours after feeding and to 2-6 mg. per cent. by 16 hours after feeding. On starvation for approximately 72 hours, values fell as low as 1.5 mg. per cent. Acetic acid was found to be a major metabolite of the bovine mammary gland, arterio-venous (A-V.) differences being directly dependent on the arterial level and of the order of 2-6 mg. per cent. or 40-80 per cent. of the arterial level in the fed animal. Arterial levels and mammary A-V. differences of acetic acid were unaffected by cod-liver oil feeding or low roughage-high concentrate diets, both of which depressed the fat percentage and the Reichert- Meissl (R-M.) value of the milk fat. Hyperinsulinism and recent or delayed milking also had no effect on the A-V. differences. The depression in R-M. value during fasting was not reversed by intraruminal or intravenous acetic acid infusions despite the maintenance of high blood levels of acetic acid. There was no detectable correlation between carbon dioxide output by the mammary gland and the acetic acid uptake of the gland, indicating that the acid served some 'useful' purpose in the gland. It is concluded, taking into account other evidence, that acetic acid is utilized in the gland for fat synthesis and oxidation, depending on the requirements of the gland, but that the proportion of lower fatty acids in milk fat is not dependent on the uptake of acetic acid.


2002 ◽  
Vol 2002 ◽  
pp. 181-181
Author(s):  
A.L. Lock ◽  
P.C. Garnsworthy

The Δ9 -desaturase system (steroyl-CoA desaturase) involves the addition of a cis double bond between carbons 9 and 10 of fatty acids. The conversion of stearic acid (C18:0) to oleic acid (cis-9 C18:1) is the predominant precursor:product of this enzyme system; conversion of saturated fatty acids (SFA) to mono-unsaturated fatty acids (MUFA) is important in determining the fluidity of milk. In previous studies (Lock & Garnsworthy 2001), we have shown that more than 50% of the oleic acid occurring in milk is produced in the mammary gland via Δ9 -desaturase. We also found that the conversion of trans-11 C18:1 to cis-9, trans-11 conjugated linoleic acid (CLA) accounted for ~80% of milk fat CLA. Increasing the activity of Δ9 -desaturase offers the opportunity of increasing the MUFA content of milk, especially oleic acid, while decreasing its SFA content, as well as increasing the CLA content of milk. Lock & Garnsworthy, (2001) also reported that there were significant differences between individual cows with regard to milk fat CLA content. In an earlier study (Lock & Garnsworthy, 2000) we found that the CLA content of milk varied throughout the year, with highest values occurring when cows received fresh pasture. In view of the significant contribution of Δ9 -desaturase to the CLA and MUFA content of milk, the objective of the work reported here was to investigate individual animal and dietary variation in Δ9 -desaturase activity in the mammary gland of lactating dairy cows.


2000 ◽  
Vol 83 (11) ◽  
pp. 2620-2628 ◽  
Author(s):  
D.C. Donovan ◽  
D.J. Schingoethe ◽  
R.J. Baer ◽  
J. Ryali ◽  
A.R. Hippen ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


2019 ◽  
Vol 102 (2) ◽  
pp. 1274-1280 ◽  
Author(s):  
John Doelman ◽  
Leslie L. McKnight ◽  
Michelle Carson ◽  
Kelly Nichols ◽  
Douglas F. Waterman ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1256
Author(s):  
Senén De La Torre-Santos ◽  
Luis J. Royo ◽  
Adela Martínez-Fernández ◽  
Cristina Chocarro ◽  
Fernando Vicente

The optimization of milk production includes a rational use of forages, respect for the environment and offers the best quality to consumers. Milk production based on grass and forages produces healthier milk and it is widely spread throughout the Atlantic arc to maximize milk yield per hectare. However, the mode of offering the grass can have a major influence on milk composition. The aim of this study was to evaluate the effect of grass supply mode (grazing, zero-grazing or ensiling) on dairy cows’ performance, with particular reference to fatty acids and fat-soluble antioxidants concentration. A three by three Latin square experiment was performed with 18 dairy cows. Experimental treatments consisted of exclusive feeding with grass silage and zero-grazing, both offered ad libitum indoors, or grazing for 24 h. The results showed that grazing cows had a higher dry matter intake and greater milk yield than cows feeding on grass silage and zero-grazing, as well as higher concentrations of protein, lactose, nonfat-solids and urea in milk than housed cows. Milk fat from grazing cows had a higher proportion of unsaturated fatty acids than from cows feeding on grass silage and zero-grazing, with significant differences in the proportion of vaccenic and rumenic acids. The 18:1 trans-11 to 18:1 trans-10 ratio is proposed as biomarker to identify the milk produced from the management system of grazing cattle. Milk from grazing cows had a greater proportion of lutein than cows eating grass silage, with the zero-grazing system having intermediate values. In conclusion, the mode of grass supply affects fatty acid and antioxidant profiles of milk.


2000 ◽  
Vol 25 ◽  
pp. 149-154
Author(s):  
B.F. McNamee ◽  
A.M. Fearon ◽  
J. Pearce

AbstractThe experiment was designed to investigate the effect of increasing the concentration of Cu2+ in the diet of the lactating dairy cow with a view to stimulating the activity of the mammary gland △9–desaturase enzyme system to increase the C18:1/18:0 ratio in the milk fat.In a preliminary study, two lactating dairy cows were provided with ground rapeseed/maizebased concentrates containing either a normal or a high concentration of supplementary Cu2+, the animal offered the normal concentration supplement was also provided with an oral CuSO4 solution drench so that both animals received an equal daily supply of Cu2+. Daily blood samples were collected from the cows and total plasma Cu2+ concentration was determined. A blood plasma lipid analysis was also carried out. In a second study, eight lactating dairy cows were provided with a silage and concentrate diet. The lipid portion of the concentrates was provided by either ground or unground rapeseed while the Cu2+ in the mineral supplement of the unground rapeseed-based concentrate was manipulated to provide one of the following three concentrations of Cu2+ in the concentrate (mg/kg DM); <10, 50 or 100. The subsequent milk fat was analysed for fatty acid composition.Presentation of an increased concentration of Cu2+ to the cow was more efficiently absorbed when provided in the concentrate mix than when provided as a CuSO4 solution in an oral drench. Increased dietary Cu2+ in the concentrates was successful at increasing the concentration of plasma Cu2+ from a normal concentration of 80–100 mg/cm3 to over 200 mg/cm3. An increased concentration of Cu2+ in the blood of the cows in the first experiment resulted in a significant increase (P<0·05) in the C18:1 content of the plasma lipid, possibly through the increased activity of the intestinal △9–desaturase enzyme system.The composition of the milk, including the fatty acid composition of the milk fat, from the second experiment was unaffected by the concentration of Cu2+ in the diet of the dairy cows within the concentration range of <10 to 35 mg/kg DM per day.


1980 ◽  
Vol 94 (3) ◽  
pp. 503-516 ◽  
Author(s):  
J. E. Storry ◽  
P. E. Brumby ◽  
B. Tuckley ◽  
V. A. Welch ◽  
D. Stead ◽  
...  

SummaryEffects of 0, 1·7, 3·3 or 5·0 kg/day of a protected soya bean – tallow supplement, incorporated into a hay:concentrate diet (25:75) and fed ad libitumto Friesian cows, on intake and digestion of fatty acids, on output of milk fatty acids and on blood lipoprotein composition were measured.Most of the increased intake of fatty acids, approximately 1 kg/day, was accounted for by increased intakes of C16:0, C18:0 and C18:1. At low intakes, amounts of all fatty acids apparently digested were linearly related to their respective intakes. At high intakes of C16 and C18 acids, curvilinear relationships were established.Yield of total milk fat was related positively to dietary intakes of total fatty acid and carbohydrate and negatively to live-weight change. Yields of short and intermediate chain acids in milk, synthesized within the mammary gland, were negatively correlated and yields of C18 fatty acids positively correlated with respective dietary intakes of these acids. Decreased proportions of C4–16 and increased proportions of C18:0 and C18:1 fatty acids in milk were associated with increased protected tallow in the diet. Yields of C16:1 and C18:1 were positively related to corresponding outputs of saturated acids and negatively to weeks of lactation. The proportion of C18:1 in milk was positively related to the corresponding proportion of C18:0.The increased intake of fatty acids resulted in increased concentrations of very low density lipoproteins (VLDL, d < 1·019 g/ml), low density lipoproteins (LDL1 + LDL2, 1·019 < d < 1·06 g/ml), high density lipoproteins (d > 1·060 g/ml) and serum free fatty acids. Most of the increase in low density lipoproteins was accounted for by a very large increase in LDL1, whose proportion increased from 17 to 75% (2 to 22% of total serum lipid). The proportion of triglyceride in the combined low density lipoprotein fraction decreased from 11 to 2% whilst phospholipids increased from 29 to 36%. These changes were attributed to the increased proportion of LDL1 present.The proportions of VLDL and LDL triglyceride taken up by the mammary gland averaged 0·79 and 0·34 respectively. The proportion of VLDL+LDL triglyceride taken up by the gland decreased with increased amounts of fatty acid digested. Yields of C18 fatty acids in milk tended to be positively related to apparent uptakes of VLDL triglyceride and to VLDL C18 fatty acids, but negatively related to apparent uptakes of LDL triglycerides and LDL C18 fatty acids. It is suggested that the increased LDL1 resulted from the utilization of VLDL triglyceride for milk fat formation.Protected lipid feeding increased the proportion of C14:0, C16:0 C16:1 and C18:1 and decreased the proportions of C14:1 and C18:0 fatty acids in jugular serum triglycerides. Similar changes were observed in jugular VLDL triglycerides. Differences in the compositions of VLDL and LDL triglycerides across the mammary gland were observed and attributed either to selective uptake or to interchange of fatty acids between triglycerides and free fatty acids.


1998 ◽  
Vol 128 (9) ◽  
pp. 1525-1532 ◽  
Author(s):  
Francis Enjalbert ◽  
Marie-Claude Nicot ◽  
Corine Bayourthe ◽  
Raymond Moncoulon

Sign in / Sign up

Export Citation Format

Share Document