Source - sink differences in genotypes and water regimes influencing sucrose accumulation in sugarcane stalks

2009 ◽  
Vol 60 (4) ◽  
pp. 316 ◽  
Author(s):  
N. G. Inman-Bamber ◽  
G. D. Bonnett ◽  
M. F. Spillman ◽  
M. L. Hewitt ◽  
Jingsheng Xu

Relatively little is known about the physiological basis for variation in sucrose content among sugarcane clones despite substantial research at the molecular and biochemical levels. We used irrigation and continuous monitoring of photosynthesis and plant extension rate to modify dry matter partitioning in four clones differing widely in sucrose content. Three pot experiments were conducted on two low sucrose content clones, KQ97-2599 and KQ97-2835, and two high sucrose content clones, Q117 and KQ97-5080, in a temperature-controlled glasshouse. As expected, sucrose content on a dry mass basis of whole stalks was greater in high (55% maximum) than in low sucrose clones (40% maximum), but sucrose content in the two clones selected for low sucrose reached 55% in some internodes. Differences between clones in whole-plant net photosynthesis and aerial biomass accumulation were small. However, biomass was distributed over fewer stalks in the high sucrose clones (4–7 stalks per pot) than in the low sucrose clones (9–11 stalks per pot). The high sucrose clones also allocated a considerably greater proportion of dry matter to the stalk (70% maximum) than the low sucrose clones (60% maximum). It is suggested that the relatively large amount of new leaf tissue produced by the high tillering, low sucrose clones placed an additional demand for structural photo-assimilate in these clones and delayed the accumulation of sucrose in the stalk. The results indicated that there is little direct genetic control on the maximum amount of sucrose that can accumulate in stalk tissue and that genetic contrasts in sucrose content reside more in the morphology of the plant and responses to ripening stimuli such as mild water stress, and how these traits influence supply and demand for photo-assimilate.

HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 669b-669
Author(s):  
D. Giovannini ◽  
D.M. Glenn ◽  
R. Scorza

The objective was to study selected physiological characteristics of the canopy and examine changes in dry matter partitioning between the root and shoot in two genetically reduced size growth types (dwarf and pillar) relative to the standard growth type. The dwarf phenotype had reduced leaf/root ratio, less allocation of dry matter to woody tissue and more to leaf tissue, high net photosynthesis, and lower leaf respiration compared to the standard and pillar phenotypes. The dwarf and pillar types had greater resistance to water flow than the standard type. Genetic changes in growth habit significantly alter many physiological parameters of peach tree growth and structure.


2009 ◽  
Vol 36 (7) ◽  
pp. 645 ◽  
Author(s):  
Dennis H. Greer ◽  
Sylvie M. Sicard

Assessing the impacts of environmental stresses on plant growth and productivity requires an understanding of the growth processes and the carbon economy that underpins this growth. Potted grapevines of the Vitis vinifera L. cv. Semillon were grown in a controlled environment and canopy growth; leaf, bunch and stem extension and net photosynthesis were routinely measured from budbreak to harvest. Allometric relationships enabled dry matter to be determined and, with net photosynthesis, used to determine the shoot carbon economy. Stems, leaves and bunches all followed a sigmoid growth pattern with leaves and stems allocated similar amounts of biomass and carbon while bunches had twice as much. Rates of carbon sequestered as biomass exceeded rates of carbon acquisition through net photosynthesis for over 25 days after budbreak. Despite the high demand for biomass in bunch growth, rates of carbon sequestration actually declined and overall, the vines maintained a positive carbon balance throughout the period of bunch growth. The Semillon shoots relied on carbon reserves to commence growth then produced a 53% carbon surplus after leaf (9%), stem (10%) and bunch (28%) growth demands were satisfied. This suggests these vines also allocated carbon to reserves to sustain the next season’s growth.


Author(s):  
Raweerat Rukkhun ◽  
Nuttapon Khongdee ◽  
Kesinee Iamsaard ◽  
Nipon Mawan ◽  
Thongchai Sainoi ◽  
...  

Background: Numerous rubbers tapping systems have been developed to increase latex yield. The objectives were (i) to test the efficiency of stimulation tapping systems and (ii) to describe the sucrose balance between supply and demand in the latex-producing bark of the rubber tree.Methods: The experiment was conducted at Thepa Research Station in Songkhla province. Eleven-year-old of RRIM600 clone was investigated. The experiment was designed as One Tree Plot Design (OTPD) with 4 tapping systems (Treatment; T) and 4 replications. Treatments were T1: S/3 2d/3, T2: S/6 d3, T3: S/6 d3 with RRIMFLOW and T4: S/6 d3 with LET. Result: S/6 d3 with RRIMFLOW tapping system in young-tapping rubber tree provided significantly highest averaged latex yield per tapping. The average cumulative latex yield was no significant difference comparing with the traditional tapping system. Rubber girth increment had no significant difference among treatments (P greater than 0.05). An averaged sucrose distribution in the trunk level of none stimulation treatments were high to very high sucrose values; however, it was medium sucrose values in the stimulation treatments. Inorganic phosphorus distribution in the trunk level showed medium to high values. Hence, the finding indicated that the use of ethylene stimulation together with tapping system should be considered for rubber tree and to control the balance of sucrose content in the trunk level of rubber tree.


2017 ◽  
Vol 68 (2) ◽  
pp. 115 ◽  
Author(s):  
Yonglu Tang ◽  
Xiaoli Wu ◽  
Chaosu Li ◽  
Wuyun Yang ◽  
Mingbo Huang ◽  
...  

Continuous improvement of potential yield is one of the most important goals of wheat breeding. The introduction of synthetic hexaploid wheat (SHW) germplasm has broken the bottleneck in potential yield, taking wheat breeding in China’s Sichuan Basin to a new level. However, systematic research on the physiological basis of high-yielding, SHW-derived cultivars has lagged behind. In the present study, three SHW-derived, high-yielding cultivars and three typical, non-synthetic cultivars widely used in wheat production were chosen for a 5-year study. Post-anthesis canopy structure, rates of canopy apparent photosynthesis (CAP), attenuation during grain filling, dry matter partitioning and other physiological parameters were studied. The average yield of the SHW-derived cultivars was 9154 kg ha–1, which was 13.5% higher than that of the non-synthetic cultivars. The increased yield was due to increased biomass and/or increased harvest index (HI). SHW-derived cultivars had shorter but wider flag leaves, with length : width ratio <10. The basal angle and open angle were small at the beginning of anthesis, which gradually increased as grain-filling progressed; the SPAD readings of the flag leaf and penultimate leaf of the SHW-derived cultivars was significantly higher than that of the non-synthetic cultivars from anthesis to mid–late grainfill. The CAP values at anthesis and 20 days post-anthesis were significantly higher in the SHW-derived cultivars than in non-synthetic cultivars, in which the difference was most significant between 10 : 00 and 12 : 00. The dry matter partitioning at anthesis varied significantly among cultivars, and the stem and sheath proportion of the SHW-derived cultivars was larger than that of the non-synthetic cultivars. At maturation, the spike rachis and leaves of the SHW-derived cultivars accounted for significantly smaller proportions of the total aboveground dry weight. Accordingly, the grain proportion was increased by 1–4 percentage points. Yield components were closely related to measured physiological parameters; e.g. grain yield correlated positively with SPAD values (r = 0.960**) and negatively with the proportion of spike rachis at maturation (r = –0.946**). This indicated that a semi-compact plant morphology, with high SPAD readings and high CAP and greater HI, was the physiological basis of high yield in SHW-derived cultivars.


HortScience ◽  
1994 ◽  
Vol 29 (12) ◽  
pp. 1481-1483 ◽  
Author(s):  
Daniela Giovannini ◽  
D. Michael Glenn ◽  
Ralph Scorza ◽  
W.V. Welker

Our objective was to evaluate the dry-matter partitioning between the roots and shoots of two genetically size-controlled peach [Prunus persica (L.) Batsch] types, dwarf and pillar, compared to a full-sized standard peach type. Compared to the pillar and standard types, the dwarf type had a reduced leaf: root ratio, less allocation of dry matter to woody tissue and more to leaf tissue. Genetically size-controlled peach trees have a smaller root system, but a lower leaf: root ratio and may require modified soil and water management techniques to ensure high productivity.


2011 ◽  
Vol 62 (10) ◽  
pp. 848 ◽  
Author(s):  
N. G. Inman-Bamber ◽  
P. A. Jackson ◽  
M. Hewitt

Until now raw sugar has been the predominant commodity produced from sugarcane (Saccharum spp. hybrids) with the exception of Brazil where fermentable sugars are used to produce ethanol. Worldwide interest in renewable energy has focussed attention on total biomass production of ‘energy canes’ rather than sucrose yield alone. Clones selected for biomass tend to have high fibre contents derived from the wild type, S. spontaneum. It is possible that high fibre genotypes can produce higher biomass yields than high sucrose types due to feedback on photosynthesis either by sucrose or sucrose signalling compounds as proposed in several recent publications on feedback responses in sugarcane leaves. Up to 20 sugarcane clones with either high fibre or high sucrose content were grown in one field and three pot experiments to elucidate some of the processes from source to sink that could be responsible for high rates of biomass accumulation expected in high fibre clones. We were particularly interested in the possibility that clones with high sucrose content may have reduced photosynthesis as sucrose levels increased in upper internodes due to feedback mechanisms. Photosynthesis of whole plants and of single leaves decreased with crop development as much as 60% in some cases. Maintenance of photosynthesis was not associated with low content of sugars in leaves or in internodes. Sink strength for sucrose storage in the upper internodes was strong in both high fibre and high sucrose clones despite plants being grown for 12 months in conditions controlled to achieve high sucrose contents. Our data supported previous conclusions about localised feedback on photosynthesis by sugars accumulating in the leaf resulting in reduced photosynthesis of small segments of individual young leaves. However, whole-plant photosynthesis did not decline through the day indicating that older leaves may compensate for reduced photosynthesis in younger leaves in the afternoon. While photosynthesis declined with crop age and sucrose content increased we found no evidence to suggest that photosynthesis declined because sucrose content increased. An increase in biomass yield through breeding and selection may not necessarily result in reduced sucrose content and increased fibre content.


1986 ◽  
Vol 107 (2) ◽  
pp. 285-297 ◽  
Author(s):  
C. F. Green ◽  
L. V. Vaidyanathan ◽  
J. D. Ivins

SummaryObservations are presented from a crop of sugar beet grown in Cambridgeshire during 1978, and a field trial at Sutton Bonington during 1985 in which the influence of synthetic plant growth regulators (PGRs) daminozide, chlormequat, GA4+7 and ethephon were compared.Several distinct patterns of growth were evident, being similar for both growing seasons and described by two intersecting straight lines. Early development was characterized by a slow rate of biomass accumulation, a dominance of foliage production with a constant but small root fraction (around 40%), a low specific leaf area and a slow but conservative rate of sucrose fractionation. Later in the season the rate of stand growth was both constant and maximal, the root fraction doubled, specific leaf area increased and the rate of sucrose accumulation rose markedly.Transitions between developmental phases occurred at various times dependent on variate under consideration. The onset of the main growth period began at the end of June, followed by an increase in the rate of sucrose accumulation about 2 weeks later. Finally, near the end of July, partition of assimilate into the root assumed a faster rate. Changes in the partitioning into both roots and sucrose are discussed in relation to the development of the secondary cambium.Generally there were no effects of PGRs on biomass accumulation, dry-matter partitioning, specific leaf area and sucrose accumulation. However, daminozide increased early canopy expansion and early dry-matter production but failed to influence biomass or sugar yield.


1990 ◽  
Vol 17 (2) ◽  
pp. 207 ◽  
Author(s):  
JM Virgona ◽  
KT Hubick ◽  
HM Rawson ◽  
GD Farquhar ◽  
RW Downes

Transpiration efficiency of dry matter production (W), carbon-isotope discrimination (�) and dry matter partitioning were measured on six sunflower (Helianthus annuus L.) genotypes grown for 32 days in a glasshouse. Two watering regimes, one well watered (HW) and the other delivering half the water used by the HW plants (LW), were imposed. Four major results emerged from this study. (1) There was significant genotypic variation in W in sunflower and this was closely reflected in Δ for both watering treatments. (2) The low watering regime caused a decrease in Δ but no change in W; nonetheless the genotypic ranking for either Δ or W was not significantly altered by water stress. (3) A positive correlation between W and biomass accumulation occurred among genotypes of HW plants. (4) Q, the ratio of total plant carbon content to leaf area, was positively correlated with W and negatively correlated with Δ. These results are discussed with reference to the connection between transpiration efficiency and plant growth. In short, Δ can be used to select for W among young vegetative sunflower plants. However, selection for W may be accompanied by changes in other important plant growth characteristics such as Q.


Weed Science ◽  
2007 ◽  
Vol 55 (5) ◽  
pp. 517-520 ◽  
Author(s):  
Ryan D. Lins ◽  
Jed B. Colquhoun ◽  
Carol A. Mallory-Smith

Small broomrape is a parasite of several broadleaf plant species. Consequences of small broomrape infestation in host cropping systems include seed contamination, reduction in crop seed yield, and host plant death. The effect of small broomrape parasitism on the biomass partitioning of its primary host, red clover, has not been documented. Greenhouse experiments were conducted to determine the relationship between small broomrape and red clover biomass accumulation. Total biomass of parasitized red clover plants was 15 to 51% less than nonparasitized red clover plants. Small broomrape parasitism reduced the amount of dry matter allocated to red clover inflorescences by 50 to 80%. Small broomrape dry matter accumulation was strongly related to total red clover–small broomrape dry matter accumulation. Small broomrape attachment number per red clover plant was a poor indicator of relative small broomrape dry weight accumulation. The results of this study indicated that small broomrape accumulated resources from red clover at the greatest expense to the economically important reproductive tissues.


Sign in / Sign up

Export Citation Format

Share Document