Anthocyanin decolorisation and its role in lychee pericarp browning

1994 ◽  
Vol 34 (1) ◽  
pp. 115 ◽  
Author(s):  
S Underhill ◽  
C Critchley

Mature red lychee fruit were stored at 3 different temperature and relative humidity regimes. Total anthocyanin concentration, pigment distribution, pH of the pericarp homogenate, Hunter a values (redness index), and visual colour were measured as a function of pericarp weight loss. Pericarp colour rapidly deteriorated during both ambient and high temperature storage, resulting in a uniform browning of the pericarp surface. The degree of tissue browning was proportional to the rate of pericarp desiccation. Although anthocyanin degradation occurred concurrently with tissue browning, visual colour and Hunter a values were not consistent with total anthocyanin concentration. Instead, a more significant correlation was seen between Hunter a values and the pH of the pericarp homogenate. Pericarp colour could be altered by external pH. Acidification of whole fruit increased pericarp redness, whereas alkaline treatment caused discoloration. Both colour responses occurred independently of anthocyanin synthesis and degradation and were completely reversible. These results question the current theory that browning is due to anthocyanin degradation. No evidence of browning was observed in the anthocyanin-containing mesocarp, and acidification of already brown tissue significantly increased pericarp redness independently of anthocyanin synthesis. We believe that anthocyanin pigments were progressively decolorised during ambient storage, possibly due to changes in pericarp pH. Once colourless, independent tissue browning became visual and was enhanced.

HortScience ◽  
1993 ◽  
Vol 28 (7) ◽  
pp. 721-722 ◽  
Author(s):  
S.J.R. Underhill ◽  
C. Critchley

Mature lychee (Litchi chinensis Sonn.) fruit were heat-treated at 60C for 10 min to study heat-induced pericarp browning. Polyphenol oxidase (EC 1.10.3.2) activity of the pericarp increased immediately, corresponding with rapid anthocyanin degradation, Tissue browning was observed 2 min after heating, with pigmentation distributed uniformly throughout the pericarp. The distribution of brown pigments was different than the highly localized browning observed under ambient desiccation. Although both ambient and heat-induced pericarp browning are visually similar, the anatomical distribution of brown pigmentation is quite distinct. The distribution of brown pigmentation was not consistent with anthocyanin localization. Following ambient desiccation, the mesocarp became colorless even though this represented the greatest concentration of pigment. Browning caused by heating may result from nonselective degradation of a range of compounds, including anthocyanin.


Author(s):  
Khushboo Azam ◽  
Hidayatullah Mir ◽  
Tushar Ranjan ◽  
Awadhesh K. Pal ◽  
Ruby Rani

Litchi (Litchi chinensis Sonn.), a subtropical fruit crop has high commercial value and consumer acceptance owing to its rich juicy aril and attractive bright red pericarp. Anthocyanin, the major pigment present in litchi pericarp reaches its maximum content in fully ripen fruit contributing to its bright red colour. Anthocyanin content in plants depends on the rate of biosynthesis, stability in the vacuoles and the rate at which it is degraded. The biosynthesis of anthocyanin occurs via an intricate phenyl propanoid pathway controlled by plethora of structural and regulatory genes. Several genes encoding enzymes responsible for anthocyanin synthesis have been isolated and characterised in different plants. Litchi fruit being highly perishable, exhibit relatively shorter postharvest shelf-life of 2–3 days at ambient conditions which in part can be attributed to the enzymatic and non-enzymatic degradation of anthocyanin. In contrast to the comprehensive understanding of molecular basis of anthocyanin synthesis, the studies on its catabolism or degradation are meagre. Polyphenols oxidases and peroxidases are the major enzymes responsible for anthocyanin degradation leading to the problem of pericarp browning. Laccase, an anthocyanin degradation enzyme expresses about thousand fold higher than the polyphenols oxidase in the pericarp with epicatechin as favourable substrate. A detailed study of the anthocyanin degradation pathway in litchi may be helpful in managing the problem of pericarp browning to preserve its bright red colour as well as to enhance the shelf life and marketability of this valuable fruit crop.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1073
Author(s):  
Meng-Bo Tian ◽  
Lin Yuan ◽  
Ming-Yuan Zheng ◽  
Zhu-Mei Xi

Anthocyanins are vital components of plant secondary metabolites, and are also the most important coloring substances in wine. Teinturier cultivars are rich in anthocyanins. However, the differences in anthocyanin accumulation and profiles between teinturier and non-teinturier cultivars have not been reported. In this study, Yan 73 and Dunkelfelder were selected as the experimental materials, and three non-teinturier cultivars were used for comparison. LC-MS and qRT-PCR were used to determine the individual anthocyanin contents and the relative gene expression. The results show that the total anthocyanin content of the teinturier cultivars was considerably higher than that in non-teinturier cultivars, and the levels of individual anthocyanins increased gradually during ripening. Lower ratios of modified anthocyanins were found in the teinturier cultivars, which was not only due to the high expression level of VvUFGT and VvGST4, but also due to the relatively low expression of VvOMT in these cultivars. Cluster analysis of gene expression and anthocyanin accumulation showed that VvUFGT is related to anthocyanin accumulation, and that AM1 is related to the synthesis and transport of methylated anthocyanins. Our results will be useful for further clarifying the pathways of anthocyanin synthesis, modification, and transport in teinturier cultivars.


Genetics ◽  
1984 ◽  
Vol 106 (3) ◽  
pp. 501-508
Author(s):  
Anton G M Gerats ◽  
Eliane Farcy ◽  
Marco Wallroth ◽  
Steven P C Groot ◽  
André Schram

ABSTRACT A mutable allele of the An1 locus in Petunia hybrida has given rise to a multiple series of stable derivative alleles. Anthocyanin concentration in mature flowers of these mutants (an1  +/p/an1) decreases from the wild-type red to the recessive white in a continuous series. Anthocyanin composition changes regularly: the ratio of peonidin to cyanidin is 3.5 for an an1  +/+/an1 and 1.2 for an an1  +/p5/an1 mutant. Analysis of anthocyanins during flower development indicates that these differences in composition are due to the specific state of the An1 locus and not to anthocyanin concentration. Anthocyanin concentration in flowers of the allelic series for An1 correlates with the activity of the enzymes UDP-glucose: flavonoid-3-O-glucosyltransferase and SAM: anthocyanin-3′-O-methyltransferase. The same correlations were found for members of a comparable allelic series at the An2 locus. The possibility that the correlation between the enzyme activities is due to the occurrence of a multienzyme complex is discussed.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 415D-415
Author(s):  
M. Oren-Shamir ◽  
Dela Gal

Changes in temperature during rose flower development, often cause a significant fading of flower color, decreasing its market value. We are studying the effect of transient high temperature stress on red roses (Rosa ×hybrida, `Jaguar'). We have found that a transient temperature stress of 39/18 °C day/night respectively for 3 days, in comparison to the growth temperature of 26/18 °C, caused a significant fading to flower color at a mature bud stage. The plant organ responsible for color fading is the flower bud only. When the stress was applied to the whole plant, not including the flower buds, there was no change on the mature bud color. We have also shown that there are specific flower developmental stages sensitive to the transient increase in temperature. Flower buds at the critical stage of development, that have been exposed to temperature increase have a faded pink-red color when matured. Total anthocyanin levels of faded flowers, due to temperature stress, decreased to ≈50%. In addition, the ratio between the two anthocyanidins composing the red color, cyanidin and pelargonidin, changed dramatically due to the temperature stress: flowers on plants that have not overcome a temperature stress had a ration of 1:1, while those that have faded due to the temperature stress have a ration of 2:1 of pelargonidin to cyanidin, respectively. These findings hint to specific stages of anthocyanin synthesis, that are hypersensitive to increased temperature. We are now in the process of identifying and characterizing these stages.


2015 ◽  
Vol 50 (12) ◽  
pp. 1160-1167 ◽  
Author(s):  
Lilian Yukari Yamamoto ◽  
Renata Koyama ◽  
Adriane Marinho de Assis ◽  
Wellington Fernando Silva Borges ◽  
Izadora Rodrigues de Oliveira ◽  
...  

Abstract : The objective of this work was to evaluate the effect of (S)-cis-abscisic acid (S-ABA) application at different ripening stages, in increasing phenolic compounds and color of berry and juice of 'Isabel' grape (Vitis labrusca). The evaluated treatments were: control, without S-ABA application; 400 mg L-1S-ABA applied 7 days before veraison (DBV) + 400 mg L-1S-ABA at 35 days after first application (DAFA); 400 mg L-1S-ABA applied at veraison (V) + 400 mg L-1S-ABA at 35 DAFA; and 400 mg L-1S-ABA applied 7 days after veraison (DAV) + 400 mg L-1S-ABA at 35 DAFA. There was no difference among treatments regarding the physical characteristics of berries and clusters, as well as total polyphenols in berry and juice. However, there was an increase in total anthocyanins in berry and juice with S-ABA application. Colorimetric variables indicated the increase in color of berry treated with S-ABA. Juices produced from grapes treated with S-ABA were more appreciated by tasters. The treatments with 400 mg L-1S-ABA applied 7 days before, during, or 7 days after veraison, combined with an additional application 35 days after the first one, increment total anthocyanin concentration and color of berry and juice of 'Isabel' grape, with better juice acceptance, without affecting total polyphenol concentration.


Genome ◽  
2018 ◽  
Vol 61 (2) ◽  
pp. 111-120 ◽  
Author(s):  
Si-Won Jin ◽  
Md Abdur Rahim ◽  
Hoy-Taek Kim ◽  
Jong-In Park ◽  
Jong-Goo Kang ◽  
...  

Ornamental cabbage (Brassica oleracea var. acephala) is a winter-grown and important decorative plant of the family Brassicaceae, which displays an exceptional coloration in the central leaves of the rosette. Anthocyanins are the key determinant of the red, purple, and blue colors of vegetative and reproductive parts of many plant species including ornamental cabbage. Total anthocyanin content was measured spectrophotometrically, and the highest anthocyanin content was detected in the red followed by light-red and white ornamental cabbage lines. Anthocyanin biosynthesis is controlled by members of three different transcription factor (TF) families, such as MYB, basic helix-loop-helix (bHLH), and WD40 repeats (WDR), which function as a MBW complex. We identified three MYB, six bHLH, and one WDR TFs that regulate anthocyanin biosynthesis in ornamental cabbage. The expression of the regulatory and biosynthetic genes for anthocyanin synthesis was determined by qPCR. The tested structural genes of the anthocyanin pathway were shown to be up-regulated in the red followed by light-red ornamental cabbage lines; however, the expression levels of the late biosynthetic genes were barely detected in the white ornamental cabbage lines. Among the regulatory genes, BoPAP2 (MYB), BoTT8, BoEGL3.1, and BoMYC1.2 (bHLH), and BoTTG1 (WDR) were identified as candidates for the regulation of anthocyanin biosynthesis. This work could be useful for the breeding of novel colorful ornamental cabbage cultivars.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6521 ◽  
Author(s):  
Zong-Huan Ma ◽  
Wen-Fang Li ◽  
Juan Mao ◽  
Wei Li ◽  
Cun-Wu Zuo ◽  
...  

Anthocyanin is an important parameter for evaluating the quality of wine grapes. However, the effects of different light intensities on anthocyanin synthesis in grape berry skin and its regulation mechanisms are still unclear. In this experiment, clusters of wine grape cv. ‘Marselan’ were bagged using fruit bags with different light transmittance of 50%, 15%, 5%, and 0, designated as treatment A, B, C and D, respectively. Fruits that were not bagged were used as the control, designated as CK. The anthocyanin composition and concentration, as well as gene expression profiles in the berry skin were determined. The results showed that the degree of coloration of the berry skin reduced with the decrease of the light transmittance, and the veraison was postponed for 10 days in D when compared with the CK. Total anthocyanin concentration in the berry skin treated with D decreased by 51.50% compared with CK at the harvest stage. A total of 24 and 21 anthocyanins were detected in CK and D, respectively. Among them, Malvidin-3-O-coumaroylglucoside (trans), which showed a significant positive correlation with the total concentration of anthocyanins at the harvest stage (r = 0.775) and was not detected in D, was presumed to be light-induced anthocyanin. Other anthocyanins which were both synthesized in CK and D were considered to be light-independent anthocyanins. Among them, Malvidin-3-O-coumaroylglucoside (cis) and Malvidin-3-O-acetylglucoside were typical representatives. Remarkably, the synthesis of light-inducible anthocyanins and light-independent anthocyanins were regulated by different candidate structural genes involved in flavonoid biosynthesis pathway and members of MYB and bHLH transcription factors.


Química Nova ◽  
2021 ◽  
Author(s):  
Marco Ávila-Hernández ◽  
César Pérez-Alonso ◽  
Juan Orozco-Villafuerte ◽  
Carlos Barrera-Díaz ◽  
Erik Alpizar-Reyes ◽  
...  

The lyophilized strawberry anthocyanins were extracted using a supercritical extraction (SE) process. The effect of pulsed electric fields (PEF) as pretreatment and the influence of the addition of ethanol as a cosolvent on the percentage of extraction yield (EY) and the total anthocyanin concentration (TAC) were analyzed. The effect of PEF was evaluated at 0.5 and 1.0 kV/cm, while the effect of the cosolvent was studied in mixtures of supercritical carbon dioxide - ethanol (SCCO2 + ethanol) at 1.6 and 3.3% by weight. The best results (% EY = 0.506, TAC = 0.428 g /100 g of lyophilized strawberry) were obtained with a PEF pretreatment of 1.0 kV cm-1, 3.3%wt. ethanol at 200 bar and 333.15 K. The experimental results of solubility were suitably adjusted with the Kumar and Johnston model. The maximum solubility (0.114 g/100 g of solvent mixture) was obtained at 300 bar and 313.15 K.


Sign in / Sign up

Export Citation Format

Share Document