Persistence and productivity of tropical pasture legumes on three cracking clay soils (Vertisols) in north-eastern Queensland

1994 ◽  
Vol 34 (2) ◽  
pp. 161 ◽  
Author(s):  
RL Clem ◽  
TJ Hall

There are few commercial legumes available for sowing on the cracking clay soils of northeastern Queensland, where legumes are needed to improve quality of perennial native grass pastures and to arrest nitrogen decline in cropping land. To evaluate introduced legumes from heavy-textured soils, a replicated row experiment was established in 3 environments to assess the adaptation of 56 accessions from 37 species (22 genera). The sites were on 3 dark cracking clay soils supporting the following grasslands: Dichanthium -Bothriochloa- Astrebla; Dichanthium aristatum; and Cenchrus ciliaris on cleared Acacia harpophylla (brigalow) country.The main selection criteria during the 4-year evaluation were persistence, regeneration, production, and spread, with green leaf retention, nutrient concentrations, and pest susceptibility also being considered. The perennial legumes Clitoria ternatea (CPI 47 187 and CPI 49963), Desmanthus virgatus (CPI 78373), Leucaena leucocephala (CPI 61227 and cv. Cunningham), Stylosanthes scabra (CPI 55868), and Indigofera schimperi (CPI 69495), and annuals Centrosema pascuorum (CPI 55697), Desmodium dichotomum (CPI 47 186), and Vigna trilobata (CPI 47510), showed promise as pasture or short-term ley species for these clay soils (Vertisols) in subcoastal, north-eastern Queensland. Other species were identified that require evaluation of a wider range of genetic material. The role of perennial and annual sown legumes in pasture and cropping systems on these cracking clay soils is discussed.


1986 ◽  
Vol 26 (2) ◽  
pp. 181 ◽  
Author(s):  
BA Keating ◽  
RW Strickland ◽  
MJ Fisher

Cracking clay soils or vertisols occur in large areas of the subhumid regions of north-eastern Australia and frequently contain appreciable levels of salt in their subsoils. The comparative salt tolerance of some tropical pasture legumes was studied in pots with NaCl added to a clay soil to achieve electrical conductivities (saturated extract, ECe) over the range 2.0- 20.0 dS m-1. Tolerance, based on EC, at 50% of maximum growth (in parentheses) was in the order: Macroptilium atropurpureum cv. Siratro (10.6)> Macroptilium lathyroides cv. Murray (9.9) > Vigna trilobata (9.7) > Indigofera spicata (9.5) > Desmanthus subulatus (9.3) > Arachis pintoi (7.9) > Clitoria ternatea (6.4) > Stylosanthes scabra (5.6) > Indigofera schimperi (5.4) > Psoralea tenax (5.3) > Rhynchosia minima (5.1). The grass Panicum coloratum cv. Bambatsi was markedly more tolerant than any of the legumes studied, with 50% yield at an EC, of 16.4 dS m-1. Patterns of Na+ and Cl- uptake with increasing level of salt differed between species, but were not related to the degree oftolerance observed. The results are discussed in terms of the reported salinity tolerance of legumes generally and their implications to the search for persistent legumes for clay soils.



Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1409 ◽  
Author(s):  
Hye Won Lee ◽  
Yong Seok Lee ◽  
Jonggun Kim ◽  
Kyoung Jae Lim ◽  
Jung Hyun Choi

Sediment plays an important role in the water quality of a lake by acting as both a nutrient source and sink. The amount of phosphorus and nitrogen in the water depends on the internal load from the sediment as well as the external load. To estimate the effects of sediment load on the water quality of a reservoir, we applied a three-dimensional hydrodynamic and transport model based on the benthic chamber experimental results at Euiam Lake, South Korea. As shown in the sensitivity analysis results, the eutrophication period could be significantly extended by a change of phosphorus flux rates from the sediments. The increased phosphorus flux from the sediments intensifies the algal growth of Euiam Lake, which could cause serious algal bloom during spring and fall. This study provides information on nutrient concentrations in the sediment of Euiam Lake, verifies the role of the sediment as a source or sink of nutrients, and evaluates the effect of sediment release of nutrients and contaminants on water quality. This research is a useful tool in determining the effects of internal load in lakes and establishing the operation guideline for sediment management in order to maintain feasible water quality for beneficial use.



Webology ◽  
2021 ◽  
Vol 18 (Special Issue 04) ◽  
pp. 1144-1159
Author(s):  
Irina Vitalevna Sosnovskaya ◽  
Nadezhda Ilinichna Nikonova ◽  
Svetlana Yrievna Zalutskaya ◽  
Nina Pavlovna Terentyeva ◽  
Elena Olegovna Galitskyh

The world practice of distance learning has updated the educational technologies that are adequate to the challenges of today and can effectively solve the problems of training competitive specialists in the new information society. Among them, visualization is singled out, which improves the quality of perception, understanding and assimilation of educational material and serves as a powerful motivator of the students’ cognitive activity. The study is aimed at characterizing the potential of visualization as a technology for teaching Pedagogy students, which allows using the tools of the digital environment effectively to achieve educational goals. The main research method is the survey of 96 second-year bachelor-degree students of the subject area “Pedagogical Education” of the Faculty of Philology of the North-Eastern Federal University. A quantitative and qualitative analysis of the results of the research on visualization as educational technology has revealed the interest of future teachers in using visual teaching methods and understanding the role of visualization in enhancing the cognitive activity of students. The respondents have demonstrated, on the one hand, knowledge of the basic means of information visualization (88%). Yet, on the other hand, not all of the respondents (55%) can clearly and consciously differentiate the concepts of “online platform”, “social network” and “visual means of transmitting information” (“visual communication”).



2014 ◽  
Vol 20 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Angela Potasznik ◽  
Sławomir Szymczyk ◽  
Marcin Sidoruk ◽  
Ilona J. Świtajska

Abstract The study was aimed at assessing the role of Lake Symsar in the reduction of phosphorus delivered mainly by the Symsarna River. Studies were carried out since March 2011 till October 2013 in the catchment basin of Lake Symsar situated in north-eastern Poland. Every month surface water samples representative for the catchment were taken for phosphate-phosphorus (PO4-P) and total phosphorus (TP) analyses. Obtained results were analysed with the distinction of vegetative and non-vegetative season. Lake Symsar is the last water body in the Symsarna River system. The river divides the lake into main basin and a bay part. Concentrations of PO4-P were higher by 17% in the former than in the latter part, TP concentrations showed reverse proportions. The highest concentrations of TP were noted in a forest stream and the highest concentrations of PO4-P in the Tolknicka Struga. Reduced concentrations of both P forms were found in waters of the Symsarna River downstream its outflow from the lake. With respect to the concentrations of PO4-P and TP, waters of the Symsarna River up- and downstream the lake were ascribed to the 1st class of water quality. Through-flow Lake Symsar improves the quality of waters (the Symsarna River and smaller streams) draining agricultural catchment by the reduction of concentrations of phosphorus compounds.



2001 ◽  
Vol 52 (2) ◽  
pp. 137 ◽  
Author(s):  
P. S . Cocks

Salinity is a widespread problem caused by an imbalance between rainfall and transpiration in the dryland cropping systems of southern Australia. The need to use more perennials has been identified and this paper examines the possibility of replacing annual with perennial pasture legumes and the germplasm available to do so. While lucerne is already used widely in eastern Australia it has only recently been adopted in the wheat belt of Western Australia. There are doubts about its adaptation to acid soils and to climates where summer rainfall is low and ambient temperatures are high. There is also a need to diversify the species available to reduce the likelihood of invasion by exotic diseases and insects. Several genera are likely to be of value in this respect, although few will be as widely adapted as lucerne. Perennial legumes are found in environments ranging from alpine to desert. Targeted collections of genera from the dry areas, especially where soils are acid, are likely to yield species of value. These may include perennial species of Astragalus, Hedysarum, Lotus, Onobrychis, Psoralea, and Trifolium. Some Australian genera, for example Swainsona, Glycine, and Cullen may also be of value. Most of these genera are from alkaline soils, and the need to cope with acid soils that are often high in free aluminium is seen to limit their use in southern Australia. However, since virtually nothing is known of the ecology and ecophysiology of species from the dry areas, it is possible that through selection and the use of adapted rhizobia, some at least may be of value in Australian conditions. Cropping in rotation with perennial legumes is likely to involve several changes in farming systems. It is impossible to predict their nature but it is essential that we understand what these changes are before the species are widely introduced. Account must also be taken of their ability to use water. It is entirely possible that perennials from dry areas are dormant in summer despite the fact that there is no evidence in the literature to this effect. It was concluded that although lucerne is suitable for phase farming, alternatives to lucerne are needed. They will have to match the water-using and nitrogen-fixing capacities of lucerne, and farming systems will be required that make full use of the new germplasm. Collaboration with institutions in the Mediterranean basin and elsewhere is needed and a beginning has been made in this direction.



2013 ◽  
Vol 21 (1) ◽  
pp. 24-33 ◽  
Author(s):  
Anne Eschen ◽  
Franzisca Zehnder ◽  
Mike Martin

This article introduces Cognitive Health Counseling 40+ (CH.CO40+), an individualized intervention that is conceptually based on the orchestration model of quality-of-life management ( Martin & Kliegel, 2010 ) and aims at improving satisfaction with cognitive health in adults aged 40 years and older. We describe the theoretically deduced characteristics of CH.CO40+, its target group, its multifactorial nature, its individualization, the application of subjective and objective measures, the role of participants as agents of change, and the rationale for choosing participants’ satisfaction with their cognitive health as main outcome variable. A pilot phase with 15 middle-aged and six older adults suggests that CH.CO40+ attracts, and may be particularly suitable for, subjective memory complainers. Implications of the pilot data for the further development of the intervention are discussed.







Sign in / Sign up

Export Citation Format

Share Document