The predicted subcellular localisation of the sugarcane proteome

2009 ◽  
Vol 36 (3) ◽  
pp. 242 ◽  
Author(s):  
Renato Vicentini ◽  
Marcelo Menossi

Plant cells are highly organised, and many biological processes are associated with specialised subcellular structures. Subcellular localisation is a key feature of proteins, since it is related to biological function. The subcellular localisation of such proteins can be predicted, providing information that is particularly relevant to those proteins with unknown or putative function. We performed the first in silico genome-wide subcellular localisation analysis for the sugarcane transcriptome (with 11 882 predicted proteins) and found that most of the proteins were localised in four compartments: nucleus (44%), cytosol (19%), mitochondria (12%) and secretory destinations (11%). We also showed that ~19% of the proteins were localised in multiple compartments. Other results allowed identification of a potential set of sugarcane proteins that could show dual targeting by the use of N-truncated forms that started from the nearest downstream in-frame AUG codons. This study was a first step in increasing knowledge about the subcellular localisation of the sugarcane proteome.

Author(s):  
Gideon A. Gyebi ◽  
Oludare M. Ogunyemi ◽  
Ibrahim M. Ibrahim ◽  
Saheed O. Afolabi ◽  
Joseph O. Adebayo

Author(s):  
Xiaoping Huang ◽  
Hongyu Zhang ◽  
Qiang Wang ◽  
Rong Guo ◽  
Lingxia Wei ◽  
...  

Abstract Key message This study showed the systematic identification of long non-coding RNAs (lncRNAs) involving in flag leaf senescence of rice, providing the possible lncRNA-mRNA regulatory relationships and lncRNA-miRNA-mRNA ceRNA networks during leaf senescence. Abstract LncRNAs have been reported to play crucial roles in diverse biological processes. However, no systematic identification of lncRNAs associated with leaf senescence in plants has been studied. In this study, a genome-wide high throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. A total of 3953 lncRNAs and 38757 mRNAs were identified, of which 343 lncRNAs and 9412 mRNAs were differentially expressed. Through weighted gene co-expression network analysis (WGCNA), 22 continuously down-expressed lncRNAs targeting 812 co-expressed mRNAs and 48 continuously up-expressed lncRNAs targeting 1209 co-expressed mRNAs were considered to be significantly associated with flag leaf senescence. Gene Ontology results suggested that the senescence-associated lncRNAs targeted mRNAs involving in many biological processes, including transcription, hormone response, oxidation–reduction process and substance metabolism. Additionally, 43 senescence-associated lncRNAs were predicted to target 111 co-expressed transcription factors. Interestingly, 8 down-expressed lncRNAs and 29 up-expressed lncRNAs were found to separately target 12 and 20 well-studied senescence-associated genes (SAGs). Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 6 down-expressed lncRNAs possibly regulated 51 co-expressed mRNAs through 15 miRNAs, and 14 up-expressed lncRNAs possibly regulated 117 co-expressed mRNAs through 21 miRNAs. Importantly, by expression validation, a conserved miR164-NAC regulatory pathway was found to be possibly involved in leaf senescence, where lncRNA MSTRG.62092.1 may serve as a ceRNA binding with miR164a and miR164e to regulate three transcription factors. And two key lncRNAs MSTRG.31014.21 and MSTRG.31014.36 also could regulate the abscisic-acid biosynthetic gene BGIOSGA025169 (OsNCED4) and BGIOSGA016313 (NAC family) through osa-miR5809. The possible regulation networks of lncRNAs involving in leaf senescence were discussed, and several candidate lncRNAs were recommended for prior transgenic analysis. These findings will extend the understanding on the regulatory roles of lncRNAs in leaf senescence, and lay a foundation for functional research on candidate lncRNAs.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jinyu Zhang ◽  
Huanqing Xu ◽  
Yuming Yang ◽  
Xiangqian Zhang ◽  
Zhongwen Huang ◽  
...  

Abstract Background Phosphorus (P) is essential for plant growth and development, and low-phosphorus (LP) stress is a major factor limiting the growth and yield of soybean. Long noncoding RNAs (lncRNAs) have recently been reported to be key regulators in the responses of plants to stress conditions, but the mechanism through which LP stress mediates the biogenesis of lncRNAs in soybean remains unclear. Results In this study, to explore the response mechanisms of lncRNAs to LP stress, we used the roots of two representative soybean genotypes that present opposite responses to P deficiency, namely, a P-sensitive genotype (Bogao) and a P-tolerant genotype (NN94156), for the construction of RNA sequencing (RNA-seq) libraries. In total, 4,166 novel lncRNAs, including 525 differentially expressed (DE) lncRNAs, were identified from the two genotypes at different P levels. GO and KEGG analyses indicated that numerous DE lncRNAs might be involved in diverse biological processes related to phosphate, such as lipid metabolic processes, catalytic activity, cell membrane formation, signal transduction, and nitrogen fixation. Moreover, lncRNA-mRNA-miRNA and lncRNA-mRNA networks were constructed, and the results identified several promising lncRNAs that might be highly valuable for further analysis of the mechanism underlying the response of soybean to LP stress. Conclusions These results revealed that LP stress can significantly alter the genome-wide profiles of lncRNAs, particularly those of the P-sensitive genotype Bogao. Our findings increase the understanding of and provide new insights into the function of lncRNAs in the responses of soybean to P stress.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lingling Shi ◽  
Rui Huang ◽  
Yongrong Lai

Abstract Background This study aimed to determine and verify the prognostic value and potential functional mechanism of signal recognition particle 14 (SRP14) in acute myeloid leukemia (AML) using a genome-wide expression profile dataset. Methods We obtained an AML genome-wide expression profile dataset and clinical prognostic data from The Cancer Genome Atlas (TCGA) and GSE12417 databases, and explored the prognostic value and functional mechanism of SRP14 in AML using survival analysis and various online tools. Results Survival analysis showed that AML patients with high SRP14 expression had poorer overall survival than patients with low SRP14 expression. Time-dependent receiver operating characteristic curves indicated that SRP14 had good accuracy for predicting the prognosis in patients with AML. Genome-wide co-expression analysis suggested that SRP14 may play a role in AML by participating in the regulation of biological processes and signaling pathways, such as cell cycle, cell adhesion, mitogen-activated protein kinase, tumor necrosis factor, T cell receptor, DNA damage response, and nuclear factor-kappa B (NF-κB) signaling. Gene set enrichment analysis indicated that SRP14 was significantly enriched in biological processes and signaling pathways including regulation of hematopoietic progenitor cell differentiation and stem cell differentiation, intrinsic apoptotic signaling pathway by p53 class mediator, interleukin-1, T cell mediated cytotoxicity, and NF-κB-inducing kinase/NF-κB signaling. Using the TCGA AML dataset, we also identified four drugs (phenazone, benzydamine, cinnarizine, antazoline) that may serve as SRP14-targeted drugs in AML. Conclusion The current results revealed that high SRP14 expression was significantly related to a poor prognosis and may serve as a prognostic biomarker in patients with AML.


MicroRNA ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Younes El Founini ◽  
Imane Chaoui ◽  
Hind Dehbi ◽  
Mohammed El Mzibri ◽  
Roger Abounader ◽  
...  

: Noncoding RNAs have emerged as key regulators of the genome upon gene expression profiling and genome-wide sequencing. Among these noncoding RNAs, microRNAs are short noncoding RNAs that regulate a plethora of functions, biological processes and human diseases by targeting the messenger RNA stability through 3’UTR binding, leading to either mRNA cleavage or translation repression, depending on microRNA-mRNA complementarity degree. Additionally, strong evidence has suggested that dysregulation of miRNAs contribute to the etiology and progression of human cancers, such as lung cancer, the most common and deadliest cancer worldwide. Indeed, by acting as oncogenes or tumor suppressors, microRNAs control all aspects of lung cancer malignancy, including cell proliferation, survival, migration, invasion, angiogenesis, cancer stem cells, immune-surveillance escape, and therapy resistance; and their expressions are often associated with clinical parameters. Moreover, several deregulated microRNAs in lung cancer are carried by exosomes, microvesicles and secreted in body fluids, mainly the circulation where they conserve their stable forms. Subsequently, seminal efforts have been focused on extracellular microRNAs levels as noninvasive diagnostic and prognostic biomarkers in lung cancer. In this review, focusing on recent literature, we summarize the deregulation, mechanisms of action, functions and highlight clinical applications of miRNAs for better management and design of future lung cancer targeted therapies.


2016 ◽  
Vol 38 (5) ◽  
pp. 375-383 ◽  
Author(s):  
Jessica J. DeWitt ◽  
Patrick M. Hecht ◽  
Nicole Grepo ◽  
Brent Wilkinson ◽  
Oleg V. Evgrafov ◽  
...  

The long noncoding RNA MSNP1AS (moesin pseudogene 1, antisense) is a functional element that was previously associated with autism spectrum disorder (ASD) with genome-wide significance. Expression of MSNP1AS was increased 12-fold in the cerebral cortex of individuals with ASD and 22-fold in individuals with a genome-wide significantly associated ASD genetic marker on chromosome 5p14.1. Overexpression of MSNP1AS in human neuronal cells caused decreased expression of moesin protein, which is involved in neuronal process stability. In this study, we hypothesize that MSNP1AS knockdown impacts global transcriptome levels. We transfected the human neural progenitor cell line SK- N-SH with constructs that caused a 50% suppression of MSNP1AS expression. After 24 h, cells were harvested for total RNA isolation. Strand-specific RNA sequencing analysis indicated altered expression of 1,352 genes, including altered expression of 318 genes following correction for multiple comparisons. Expression of the OAS2 gene was increased >150-fold, a result that was validated by quantitative PCR. Gene ontology analysis of the 318 genes with altered expression following correction for multiple comparisons indicated that upregulated genes were significantly enriched for genes involved in immune response, and downregulated genes were significantly enriched for genes involved in chromatin remodeling. These data indicate multiple transcriptional and translational functions of MSNP1AS that impact ASD-relevant biological processes. Chromatin remodeling and immune response are biological processes implicated by genes with rare mutations associated with ASD. Our data suggest that the functional elements implicated by association of common genetic variants impact the same biological processes, suggesting a possible shared common molecular pathway of ASD.


Author(s):  
Nasa Sinnott-Armstrong ◽  
Sahin Naqvi ◽  
Manuel Rivas ◽  
Jonathan K Pritchard

SummaryGenome-wide association studies (GWAS) have been used to study the genetic basis of a wide variety of complex diseases and other traits. However, for most traits it remains difficult to interpret what genes and biological processes are impacted by the top hits. Here, as a contrast, we describe UK Biobank GWAS results for three molecular traits—urate, IGF-1, and testosterone—that are biologically simpler than most diseases, and for which we know a great deal in advance about the core genes and pathways. Unlike most GWAS of complex traits, for all three traits we find that most top hits are readily interpretable. We observe huge enrichment of significant signals near genes involved in the relevant biosynthesis, transport, or signaling pathways. We show how GWAS data illuminate the biology of variation in each trait, including insights into differences in testosterone regulation between females and males. Meanwhile, in other respects the results are reminiscent of GWAS for more-complex traits. In particular, even these molecular traits are highly polygenic, with most of the variance coming not from core genes, but from thousands to tens of thousands of variants spread across most of the genome. Given that diseases are often impacted by many distinct biological processes, including these three, our results help to illustrate why so many variants can affect risk for any given disease.


Sign in / Sign up

Export Citation Format

Share Document