Endoplasmic reticulum stress regulates glutathione metabolism and activities of glutathione related enzymes in Arabidopsis

2018 ◽  
Vol 45 (2) ◽  
pp. 284 ◽  
Author(s):  
Baris Uzilday ◽  
Rengin Ozgur ◽  
A. Hediye Sekmen ◽  
Ismail Turkan

Stress conditions generate an extra load on protein folding machinery in the endoplasmic reticulum (ER) and if the ER cannot overcome this load, unfolded proteins accumulate in the ER lumen, causing ER stress. ER lumen localised protein disulfide isomerase (PDI) catalyses the generation of disulfide bonds in conjugation with ER oxidoreductase1 (ERO1) during protein folding. Mismatched disulfide bonds are reduced by the conversion of GSH to GSSG. Under prolonged ER stress, GSH pool is oxidised and H2O2 is produced via increased activity of PDI-ERO1. However, it is not known how glutathione metabolism is regulated under ER stress in plants. So, in this study, ER stress was induced with tunicamycin (0.15, 0.3, 0.45 μg mL–1 Tm) in Arabidopsis thaliana (L.) Heynh. Glutathione content was increased by ER stress, which was accompanied by induction of glutathione biosynthesis genes (GSH1, GSH2). Also, the apoplastic glutathione degradation pathway (GGT1) was induced. Further, the activities of glutathione reductase (GR), dehydroascorbate reductase (DHAR), glutathione peroxidase (GPX) and glutathione S-transferase (GST) were increased under ER stress. Results also showed that chloroplastic GPX genes were specifically downregulated with ER stress. This is the first report on regulation of glutathione metabolism and glutathione related enzymes in response to ER stress in plants.

2019 ◽  
Vol 20 (7) ◽  
pp. 1783 ◽  
Author(s):  
Takasugi ◽  
Hiraoka ◽  
Nakahara ◽  
Akiyama ◽  
Fujikawa ◽  
...  

The unfolded protein response (UPR) is activated by the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which is called ER stress. ER stress sensors PERK, IRE1, and ATF6 play a central role in the initiation and regulation of the UPR; they inhibit novel protein synthesis and upregulate ER chaperones, such as protein disulfide isomerase, to remove unfolded proteins. However, when recovery from ER stress is difficult, the UPR pathway is activated to eliminate unhealthy cells. This signaling transition is the key event of many human diseases. However, the precise mechanisms are largely unknown. Intriguingly, reactive electrophilic species (RES), which exist in the environment or are produced through cellular metabolism, have been identified as a key player of this transition. In this review, we focused on the function of representative RES: nitric oxide (NO) as a gaseous RES, 4-hydroxynonenal (HNE) as a lipid RES, and methylmercury (MeHg) as an environmental organic compound RES, to outline the relationship between ER stress and RES. Modulation by RES might be a target for the development of next-generation therapy for ER stress-associated diseases.


2019 ◽  
Vol 16 (1) ◽  
pp. 3-11
Author(s):  
Luisa Halbe ◽  
Abdelhaq Rami

Introduction: Endoplasmic reticulum (ER) stress induced the mobilization of two protein breakdown routes, the proteasomal- and autophagy-associated degradation. During ERassociated degradation, unfolded ER proteins are translocated to the cytosol where they are cleaved by the proteasome. When the accumulation of misfolded or unfolded proteins excels the ER capacity, autophagy can be activated in order to undertake the degradative machinery and to attenuate the ER stress. Autophagy is a mechanism by which macromolecules and defective organelles are included in autophagosomes and delivered to lysosomes for degradation and recycling of bioenergetics substrate. Materials and Methods: Autophagy upon ER stress serves initially as a protective mechanism, however when the stress is more pronounced the autophagic response will trigger cell death. Because autophagy could function as a double edged sword in cell viability, we examined the effects autophagy modulation on ER stress-induced cell death in HT22 murine hippocampal neuronal cells. We investigated the effects of both autophagy-inhibition by 3-methyladenine (3-MA) and autophagy-activation by trehalose on ER-stress induced damage in hippocampal HT22 neurons. We evaluated the expression of ER stress- and autophagy-sensors as well as the neuronal viability. Results and Conclusion: Based on our findings, we conclude that under ER-stress conditions, inhibition of autophagy exacerbates cell damage and induction of autophagy by trehalose failed to be neuroprotective.


2021 ◽  
pp. 1-10
Author(s):  
Vera Kovaleva ◽  
Mart Saarma

Parkinson’s disease (PD) pathology involves progressive degeneration and death of vulnerable dopamine neurons in the substantia nigra. Extensive axonal arborisation and distinct functions make this type of neurons particularly sensitive to homeostatic perturbations, such as protein misfolding and Ca2 + dysregulation. Endoplasmic reticulum (ER) is a cell compartment orchestrating protein synthesis and folding, as well as synthesis of lipids and maintenance of Ca2 +-homeostasis in eukaryotic cells. When misfolded proteins start to accumulate in ER lumen the unfolded protein response (UPR) is activated. UPR is an adaptive signalling machinery aimed at relieving of protein folding load in the ER. When UPR is chronic, it can either boost neurodegeneration and apoptosis or cause neuronal dysfunctions. We have recently discovered that mesencephalic astrocyte-derived neurotrophic factor (MANF) exerts its prosurvival action in dopamine neurons and in animal model of PD through the direct binding to UPR sensor inositol-requiring protein 1 alpha (IRE1α) and attenuation of UPR. In line with this, UPR targeting resulted in neuroprotection and neurorestoration in various preclinical PD animal models. Therefore, growth factors (GFs), possessing both neurorestorative activity and restoration of protein folding capacity are attractive as drug candidates for PD treatment especially their blood-brain barrier penetrating analogs and small molecule mimetics. In this review, we discuss ER stress as a therapeutic target to treat PD; we summarize the existing preclinical data on the regulation of ER stress for PD treatment. In addition, we point out the crucial aspects for successful clinical translation of UPR-regulating GFs and new prospective in GFs-based treatments of PD, focusing on ER stress regulation.


2020 ◽  
Author(s):  
Constanza Feliziani ◽  
Gonzalo Quasollo ◽  
Deborah Holstein ◽  
Macarena Fernandez ◽  
James C Paton ◽  
...  

AbstractThe accumulation of unfolded proteins within the Endoplasmic Reticulum (ER) activates a signal transduction pathway termed the unfolded protein response (UPR), which attempts to restore ER homeostasis. If homeostasis cannot be restored, UPR signalling ultimately induces apoptosis. Ca2+ depletion in the ER is a potent inducer of ER stress. Despite the ubiquity of Ca2+ as intracellular messenger, the precise mechanism (s) by which Ca2+ release affects the UPR remains unknown. Use of a genetically encoded Ca2+ indicator (GCamP6) that is tethered to the ER membrane, uncovered novel Ca2+ signalling events initiated by Ca2+ microdomains in human astrocytes under ER stress, as well as in a cell model deficient in all three IP3 Receptor isoforms. Pharmacological and molecular studies indicate that these local events are mediated by translocons. Together, these data reveal the existence of a previously unrecognized mechanism by which stressor-mediated Ca2+ release regulates ER stress.


2020 ◽  
Vol 295 (36) ◽  
pp. 12772-12785 ◽  
Author(s):  
Shingo Kanemura ◽  
Elza Firdiani Sofia ◽  
Naoya Hirai ◽  
Masaki Okumura ◽  
Hiroshi Kadokura ◽  
...  

Oxidative protein folding occurs primarily in the mammalian endoplasmic reticulum, enabled by a diverse network comprising more than 20 members of the protein disulfide isomerase (PDI) family and more than five PDI oxidases. Although the canonical disulfide bond formation pathway involving Ero1α and PDI has been well-studied so far, the physiological roles of the newly identified PDI oxidases, glutathione peroxidase-7 (GPx7) and -8 (GPx8), are only poorly understood. We here demonstrated that human GPx7 has much higher reactivity with H2O2 and hence greater PDI oxidation activity than human GPx8. The high reactivity of GPx7 is due to the presence of a catalytic tetrad at the redox-active site, which stabilizes the sulfenylated species generated upon the reaction with H2O2. Although it was previously postulated that GPx7 catalysis involved a highly reactive peroxidatic cysteine that can be sulfenylated by H2O2, we revealed that a resolving cysteine instead regulates the PDI oxidation activity of GPx7. We also determined that GPx7 formed complexes preferentially with PDI and P5 in H2O2-treated cells. Altogether, these results suggest that human GPx7 functions as an H2O2-dependent PDI oxidase in cells, whereas PDI oxidation may not be the central physiological role of human GPx8.


2004 ◽  
Vol 15 (6) ◽  
pp. 2537-2548 ◽  
Author(s):  
Satomi Nadanaka ◽  
Hiderou Yoshida ◽  
Fumi Kano ◽  
Masayuki Murata ◽  
Kazutoshi Mori

Newly synthesized secretory and transmembrane proteins are folded and assembled in the endoplasmic reticulum (ER) where an efficient quality control system operates so that only correctly folded molecules are allowed to move along the secretory pathway. The productive folding process in the ER has been thought to be supported by the unfolded protein response (UPR), which is activated by the accumulation of unfolded proteins in the ER. However, a dilemma has emerged; activation of ATF6, a key regulator of mammalian UPR, requires intracellular transport from the ER to the Golgi apparatus. This suggests that unfolded proteins might be leaked from the ER together with ATF6 in response to ER stress, exhibiting proteotoxicity in the secretory pathway. We show here that ATF6 and correctly folded proteins are transported to the Golgi apparatus via the same route and by the same mechanism under conditions of ER stress, whereas unfolded proteins are retained in the ER. Thus, activation of the UPR is compatible with the quality control in the ER and the ER possesses a remarkable ability to select proteins to be transported in mammalian cells in marked contrast to yeast cells, which actively utilize intracellular traffic to deal with unfolded proteins accumulated in the ER.


2013 ◽  
Vol 12 (4) ◽  
pp. 512-519 ◽  
Author(s):  
Karthik Krishnan ◽  
Xizhi Feng ◽  
Margaret V. Powers-Fletcher ◽  
Gregory Bick ◽  
Daryl L. Richie ◽  
...  

ABSTRACT Proteins that are destined for release outside the eukaryotic cell, insertion into the plasma membrane, or delivery to intracellular organelles are processed and folded in the endoplasmic reticulum (ER). An imbalance between the level of nascent proteins entering the ER and the organelle's ability to manage that load results in the accumulation of unfolded proteins. Terminally unfolded proteins are disposed of by ER-associated degradation (ERAD), a pathway that transports the aberrant proteins across the ER membrane into the cytosol for proteasomal degradation. The ERAD pathway was targeted in the mold pathogen Aspergillus fumigatus by deleting the hrdA gene, encoding the A. fumigatus ortholog of Hrd1, the E3 ubiquitin ligase previously shown to contribute to ERAD in other species. Loss of HrdA was associated with impaired degradation of a folding-defective ERAD substrate, CPY*, as well as activation of the unfolded-protein response (UPR). The Δ hrdA mutant showed resistance to voriconazole and reduced thermotolerance but was otherwise unaffected by a variety of environmental stressors. A double-deletion mutant deficient in both HrdA and another component of the same ERAD complex, DerA, was defective in secretion and showed hypersensitivity to ER, thermal, and cell wall stress. However, the Δ hrdA Δ derA mutant remained virulent in mouse and insect infection models. These data demonstrate that HrdA and DerA support complementary ERAD functions that promote survival under conditions of ER stress but are dispensable for virulence in the host environment.


2012 ◽  
Vol 27 (3) ◽  
pp. 965-977 ◽  
Author(s):  
Harshavardhan Kenche ◽  
Catherine J. Baty ◽  
Kokilavani Vedagiri ◽  
Steven D. Shapiro ◽  
Anna Blumental‐Perry

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Sana Basseri ◽  
Richard C. Austin

The endoplasmic reticulum (ER) plays a crucial role in protein folding, assembly, and secretion. Disruption of ER homeostasis may lead to accumulation of misfolded or unfolded proteins in the ER lumen, a condition referred to as ER stress. In response to ER stress, a signal transduction pathway known as the unfolded protein response (UPR) is activated. UPR activation allows the cell to cope with an increased protein-folding demand on the ER. Recent studies have shown that ER stress/UPR activation plays a critical role in lipid metabolism and homeostasis. ER-stress-dependent dysregulation of lipid metabolism may lead to dyslipidemia, insulin resistance, cardiovascular disease, type 2 diabetes, and obesity. In this paper, we examine recent findings illustrating the important role ER stress/UPR signalling pathways play in regulation of lipid metabolism, and how they may lead to dysregulation of lipid homeostasis.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Metis Hasipek ◽  
Dale Grabowski ◽  
Yihong Guan ◽  
Anand D. Tiwari ◽  
Xiaorong Gu ◽  
...  

Multiple myeloma (MM) is a genetically complex hematological disease which is characterized by clonal proliferation of plasma cells in the bone marrow and secretion of monoclonal antibodies and cytokines that can damage bone, bone marrow, and kidney function1. MM cells constantly operate at the limit of their unfolded protein response (UPR) in the face of a secretory load of immunoglobin (Ig) and cytokines that is unparalleled by any other mammalian cell 2,3 and microenvironmental factors that aggravate the degree of physiologic misfolding that occurs during synthesis of secreted proteins. The endoplasmic reticulum (ER) resident protein disulfide isomerases (PDIs) are indispensable for folding of secreted proteins that require intramolecular disulfide-bond arrangement 4 like antibodies and many cytokines. As the main PDI family member, near-complete function of PDIA1 is essential for survival of MM cells while its inhibition should be manageable by the UPR in normal cells creating an opportunity for a large therapeutic window for PDI inhibitors in MM. Previously, we discovered and characterized an irreversible PDI inhibitor (CCF642) that induced cell death in MM cells at doses that did not affect survival of normal bone marrow cells. However, CCF642 has poor solubility and suboptimal selectivity precluding clinical translation. Using structure guided medicinal chemistry, we developed and characterized a highly potent and selective PDI inhibitor, with 10-fold higher potency (Fig 1B) and selectivity. CCF642-34 showed remarkable selectivity against PDIA1 and off-target bindings were eliminated when compared to CCF642 (Fig 1C). In addition to improved selectivity and in vitro PDI inhibition, CCF642-34 demonstrated more than 3-fold higher potency compared to CCF642 against MM1.S and bortezomib resistant MM1.S cells remained sensitive to CCF642-34. Importantly, the novel analogue CCF642-34 has 18-fold better potency in restricting the colony forming abilities of RPMI1640 cells while at no effect on the clonogenic potential of CD34+ cells derived from healthy bone marrow was observed at equivalent doses. CCF642-34 induces ER stress in MM1.S cells as observed in dose and time dependent cleavage of XBP1, IRE1α oligomerization and the profound induction of programmed cell death reflected by PARP and caspase 3 cleavage. To further analyze the modes of action of CCF642-34 and CCF642 we performed RNAseq after treatment of MM1.S cells and found exclusive induction of genes associated with UPR and downstream cell cycle and apoptotic responses for CCF642-34 while additional genes affecting were detected after CCF642 treatment. There were 362 and 568 differentially expressed genes in CCF642-34 and CCF-642 (compared to controls) treated MM1.S cells, respectively. Among these differentially expressed genes 87 down regulated and 142 upregulated were common to both, including downregulation of cell division and mitotic cell cycle process, and upregulation of response to ER stress, unfolded protein response, and apoptotic process gene sets. Results confirm that both CCF642 and CCF642-34 treatment act by inducing lethal ER-stress with greater selectivity for CCF642-34. Accordingly, hierarchical clustering showed distinct gene expression profiles in 642-34 and 642 treated MM1S cells (Fig. 2). CCF642-34 is orally bioavailable and highly efficacious in against established multiple myeloma in a syngeneic 5TGM1-luc/C57BL/KaLwRij model of myeloma. All vehicle control animals were dead by 52 days while 3 out of 6 mice lived beyond 6 months with no sign of relapse. In summary, we synthesized and characterized a novel lead PDIA1 inhibitor based on structure-guided medicinal chemistry that has improved pharmacologic properties to act as novel lead for clinical translation. References: 1. Manier S, Salem KZ, Park J, et al. Genomic complexity of multiple myeloma and its clinical implications. Nat. Rev. Clin. Oncol. 2017; 2. Fonseca R, Bergsagel PL, Drach J, et al. International Myeloma Working Group molecular classification of multiple myeloma: Spotlight review. Leukemia. 2009; 3. Wang M, Kaufman RJ. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer. 2014; 4. Freedman RB, Hirst TR, Tuite MF. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 1994; Disclosures Valent: Takeda Pharmaceuticals: Other: Teaching, Speakers Bureau; Celgene: Other: Teaching, Speakers Bureau; Amgen Inc.: Other: Teaching, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document