Interspecific variations in tree allometry and functional traits in subtropical plantations in southern China

2020 ◽  
Vol 47 (6) ◽  
pp. 558
Author(s):  
Liwei Zhu ◽  
Yanting Hu ◽  
Ping Zhao

Mechanical stability against buckling and water transport resistance through xylem vary with increasing tree height. To explore interspecific allometry based on morphological and physiological traits can play a crucial role in revealing their ecological adaptation. Four architectural traits (tree height, diameter at the breast height (DBH), crown width and crown depth) and seven functional traits (specific leaf area (SLA), leaf total carbon concentration (TC), midday leaf water potential, leaf δ13C and δ18O, wood density and xylem water transport efficiency) were measured in Schima superba, Acacia auriculiformis and Eucalyptus citriodora plantations in the subtropical region of China. The mechanical stability declined in the order of S. superba > A. auriculiformis > E. citriodora. Taller species at a given DBH had slender stems and narrower crowns. Smaller leaf δ18O and more efficient xylem water transport were observed in two taller tree species, A. auriculiformis and E. citriodora. Smaller SLA, higher leaf TC and larger leaf area indicated more carbon allocation to leaves of S. superba. The variations in architectural and functional traits with tree allometry among tree species may provide a more complete understanding of species-specific growth strategies in this subtropical region.

2021 ◽  
Vol 12 ◽  
Author(s):  
Caishuang Huang ◽  
Yue Xu ◽  
Runguo Zang

Understanding how environmental change alters the composition of plant assemblages is a major challenge in the face of global climate change. Researches accounting for site-specific trait values within forest communities help bridge plant economics theory and functional biogeography to better evaluate and predict relationships between environment and ecosystem functioning. Here, by measuring six functional traits (specific leaf area, leaf dry matter content, leaf nitrogen, and phosphorus concentration, leaf nitrogen/phosphorus, wood density) for 292 woody plant species (48,680 individuals) from 250 established permanent forest dynamics plots in five locations across the subtropical evergreen broadleaved forests (SEBLF) in China, we quantified functional compositions of communities by calculating four trait moments, i.e., community-weighted mean, variance, skewness, and kurtosis. The geographical (latitudinal, longitudinal, and elevational) patterns of functional trait moments and their environmental drivers were examined. Results showed that functional trait moments shifted significantly along the geographical gradients, and trait moments varied in different ways across different gradients. Plants generally showed coordinated trait shifts toward more conservative growth strategies (lower specific leaf area, leaf N and P concentration while higher leaf nitrogen/phosphorus and wood density) along increasing latitude and longitude. However, trends opposite to the latitudinal and longitudinal patterns appeared in trait mean values along elevation. The three sets of environmental variables (climate, soil and topography) explained 35.0–69.0%, 21.0–56.0%, 14.0–31.0%, and 16.0–30.0% of the variations in mean, variance, skewness, and kurtosis across the six functional traits, respectively. Patterns of shifts in functional trait moments along geographical gradients in the subtropical region were mainly determined by the joint effects of climatic and edaphic conditions. Climate regimes, especially climate variability, were the strongest driving force, followed by soil nutrients, while topography played the least role. Moreover, the relationship of variance, skewness and kurtosis with climate and their geographical patterns suggested that rare phenotypes at edges of trait space were selected in harsher environments. Our study suggested that environmental filtering (especially climate variability) was the dominant process of functional assembly for forest communities in the subtropical region along geographical gradients.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 928 ◽  
Author(s):  
Dong ◽  
Liu ◽  
Zhang ◽  
Xie ◽  
Li

In this study, the effects of tree species, tissue types, and tree size on the carbon concentration were studied, and the two additive systems, one with tree diameter (D), and the other with both D and tree height (H), were developed to estimate the stem, root, branch, and foliage carbon content of 10 broadleaf species in northeast China. The coefficients of the two systems were estimated with the nonlinear seemingly unrelated regression (NSUR), while the heteroscedasticity of the model residual was solved with the weight function. Our results showed that carbon concentrations varied along with tree species and size; the tissues and foliage contained higher carbon concentration than other observed tissues. The two additive carbon equation systems exhibited good predictive and fitting performance, with Ra2 > 0.87, average prediction error of approximately 0, and small average absolute error and absolute error percentage. The carbon equation system constructed with D and H exhibited better fit and performance, particularly for the stem and total carbon. Thus, the additive carbon equation systems estimated the tree carbon of 10 broadleaf species more accurately. These carbon equations can be used to monitor the carbon pool sizes for natural forests in the Chinese National Forest Inventory.


2021 ◽  
Author(s):  
Ezekiel Ajayi

Tree species carbon assessment and quantification remain the only opportunity to determine the position of forest in climate change amelioration potentials. Forest biomass constitutes the largest terrestrial carbon sink and accounts for approximately 90% of all living terrestrial biomass. The aim of this study is to assess tree species carbon sequestration potentials of selected urban tree species. The study was carried out in Adekunle Ajasin University Campus, Akungba Akoko, Ondo State, Nigeria. All trees species ≥10 cm Diameter at Breast Height (Dbh) within the area were identified and their Dbh measured as well as other variables for volume computation such as height, diameters at the base, middle and top. Also, for density assessment; stem core samples were collected. Again, the coordinate of individual tree was recorded using a Global Positioning System (GPS) receiver. A total of 124 individual trees were encountered with varying growth variables as well as carbon values. The study area contains some indigenous and exotic tree species such as Acacia auriculiformis, Terminalia mantily, Gmelina arborea and Tectona grandis etc. but Acacia auriculiformis had the highest frequency. The tree species with highest carbon sequestration was Gmelina arborea as recorded for this study. The total carbon and carbon dioxide sequestered in the study area were reported as 47.94 kg and 176.03 kg respectively.


2020 ◽  
Vol 98 (1) ◽  
pp. 76-85
Author(s):  
Guadalupe Williams-Linera ◽  
Avril Manrique-Ascencio

Background: The use of tree species’ functional traits is a promising approach in forest restoration. However, some traits may change during ontogeny. Questions: Does intraspecific variation in functional traits occur between sapling and adult stages? Do groups of species can be delimited based on functional traits regardless of their ontogenetic stage? Study sites and dates: Cloud forest restoration, Veracruz, Mexico, 2016. Methods: Saplings and adults of eight native tree species in different age plantations were measured for leaf area (LA), specific leaf area (SLA), stomatal density (SD), foliar nutrient content (C, N, P) and relative growth rate (RGR). Wood density (WD) was measured for adults. Data were analyzed using linear mixed models and principal component analysis (PCA). Results: Overall, SLA was higher in saplings than in adults. A few species showed intraspecific variation for LA (three species), SD (three) and foliar N content (one). Species with high WD (Quercus spp.) and intermediate WD (e.g. Liquidambar styraciflua) tended to have lower LA and SLA, and higher SD. Species with low WD (e.g. Heliocarpus donnellsmithii) had high SLA, RGR, and N content. PCA highlighted that saplings and adults of a same species were close to each other within the ordination space.  Conclusions: Intraspecific variation between saplings and adults was small for most traits (except SLA) in comparison to differences across species. Therefore species trait values (measured in individuals of any age) could be a useful tool to characterize groups of species during the forest restoration trajectory.


2019 ◽  
Vol 48 (3) ◽  
pp. 417-425
Author(s):  
Md Khayrul Alam Bhuiyan ◽  
Md Akhter Hossain ◽  
Abdul Kadir Ibne Kamal ◽  
Mohammed Kamal Hossain ◽  
Mohammed Jashimuddin ◽  
...  

A study was conducted by using 5m × 5m sized 179 quadrates following multistage random sampling method for comparative regenerating tree species, quantitative structure, diversity, similarity and climate resilience in the degraded natural forests and plantations of Cox's Bazar North and South Forest Divisions. A total of 70 regenerating tree species were recorded representing maximum (47 species) from degraded natural forests followed by 43 species from 0.5 year 39 species from 1.5 year and 29 species from 2.5 year old plantations. Quantitative structure relating to ecological dominance indicated dominance of Acacia auriculiformis, Grewia nervosa and Lithocarpus elegans seedlings in the plantations whereas seedlings of Aporosa wallichii, Suregada multiflora and Grewia nervosa in degraded natural forests. The degraded natural forests possess higher natural regeneration potential as showed by different diversity indices. The dominance-based cluster analysis showed 2 major cluster of species under one of which multiple sub-clusters of species exists. Poor plant diversity and presence of regenerating exotic species in the plantations indicated poor climate resilience of forest ecosystem in terms of natural regeneration.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 793
Author(s):  
Yaxiong Zheng ◽  
Fengying Guan ◽  
Shaohui Fan ◽  
Yang Zhou ◽  
Xiong Jing

Functional characteristics reflect plant strategies and adaptability to the changing environment. Determining the dynamics of these characteristics after harvesting would improve the understanding of forest response strategies. Strip clearcutting (SC) of moso bamboo forests, which significantly reduces the cutting cost, has been proposed to replace manual selective harvesting. A comparison of restoration features shows that 8 m is the optimal cutting width. However, the precise response of functional features to the resulting harvest-created gap remains unclear. In this study, three SC plots were selected which was performed in February 2019, with three unharvested plots as a control (C). The study focused on 10 functional traits, including leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen content (LNC), leaf phosphorus content (LPC), nitrogen/phosphorus ratio (N:P), wood density (WD), fine root biomass (FRB), specific fine root length (SRL), and root length density (RLD). A one-way ANOVA was used to compare differences in functional traits and soil nutrients between treatments. Strip clearcutting significantly reduced the soil organic carbon (SOC) and total nitrogen (TN) contents (p < 0.05). In terms of functional characteristics, SC significantly decreased LA and increased LNC, LPC, and N:P (p < 0.05). However, SC had no significant effect on fine root traits (p > 0.05). This study highlighted that root trait, soil content of total phosphorus (TP) and total potassium (TK) returned to the level of uncut plots after a year’s recovery. The LPC, LNC, and N:P were negatively correlated with LA, and LDMC and WD were negatively correlated with SLA, while the effect of SC on fine root traits was limited (p > 0.05). Fine root traits (FRB, RLD, and SRL) were positively associated with SOC, TN, and TP, but negatively correlated with TK. The changes in soil nutrient content caused by the removal of biomass were normal. Increased light and the rapid growth of new trees will increase nutrient regressions; therefore, these results further confirm the feasibility of SC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jorge Palomo-Kumul ◽  
Mirna Valdez-Hernández ◽  
Gerald A. Islebe ◽  
Manuel J. Cach-Pérez ◽  
José Luis Andrade

AbstractWe evaluated the effect of ENSO 2015/16 on the water relations of eight tree species in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. The functional traits: wood density, relative water content in wood, xylem water potential and specific leaf area were recorded during the rainy season and compared in three consecutive years: 2015 (pre-ENSO conditions), 2016 (ENSO conditions) and 2017 (post-ENSO conditions). We analyzed tree size on the capacity to respond to water deficit, considering young and mature trees, and if this response is distinctive in species with different leaf patterns in seasonally dry tropical forests distributed along a precipitation gradient (700–1200 mm year−1). These traits showed a strong decrease in all species in response to water stress in 2016, mainly in the driest site. Deciduous species had lower wood density, higher predawn water potential and higher specific leaf area than evergreen species. In all cases, mature trees were more tolerant to drought. In the driest site, there was a significant reduction in water status, regardless of their leaf phenology, indicating that seasonally dry tropical forests are highly vulnerable to ENSO. Vulnerability of deciduous species is intensified in the driest areas and in the youngest trees.


2021 ◽  
Author(s):  
vivek pandi ◽  
Kanda Naveen Babu

Abstract The present study was carried out to analyse the leaf functional traits of co-occurring evergreen and deciduous tree species in a tropical dry scrub forest. This study also intended to check whether the species with contrasting leaf habits differ in their leaf trait plasticity, responding to the canopy-infestation by lianas. A total of 12 leaf functional traits were studied for eight tree species with contrasting leaf habits (evergreen and deciduous) and liana-colonization status (Liana+ and Liana−). In the liana-free environment (L−), evergreen trees had significantly higher specific leaf mass (LMA) and leaf dry matter content (LDMC) than the deciduous species. Whereas, the deciduous trees had higher specific leaf area (SLA) and mass-based leaf nitrogen concentration (Nmass). The leaf trait-pair relationship in the present study agreed to the well-established global trait-pair relationships (SLA Vs Nmass, Lth Vs SLA, Nmass Vs Lth, Nmass Vs LDMC, LDMC Vs SLA). There was no significant difference between L+ and L− individuals in any leaf functional traits studied in the deciduous species. However, evergreen species showed marked differences in the total chlorophyll content (Chlt), chlorophyll b (Chlb), SLA, and LMA between L+ and L− individuals of the same species. Deciduous species with the acquisitive strategy can have a competitive advantage over evergreen species in the exposed environment (L−) whereas, evergreen species with shade-tolerant properties were better acclimated to the shaded environments (L+). The result revealed the patterns of convergence and divergence in some of the leaf functional traits between evergreen and deciduous species. The results also showed the differential impact of liana colonization on the host trees with contrasting leaf habits. Therefore, liana colonization can significantly impact the C-fixation strategies of the host trees by altering their light environment. Further, the magnitude of such impact may vary among species of different leaf habits. The increased proliferation of lianas in the tropical forest canopies may pose a severe threat to the whole forest carbon assimilation rates.


Sign in / Sign up

Export Citation Format

Share Document