Relation Between Salt Tolerance and Long-Distance Transport of Sodium and Chloride in Various Crop Species

1978 ◽  
Vol 5 (1) ◽  
pp. 27 ◽  
Author(s):  
H Lessani ◽  
H Marschner

The effect of NaCl concentrations up to 100 mM in the nutrient solution upon dry matter production and mineral composition of seven plant species was studied in a pot culture experiment. The plants could be arranged into three groups according to the depression in dry matter production at 100 mM NaCl: tolerant (sugar beet; maize, cv. Velox); moderately tolerant (cress; sunflower; safflower; maize, cv. DC 790); and sensitive (pepper; bean, cv. Saxa and Contender). In all plant species, the chloride content increased more than the sodium content in the shoots with an increasing supply of NaCl. Differences between plant species were much higher in sodium content than in chloride content. In most plant species, a supply of NaCl decreased the potassium content much less than the calcium content. Application of labelled sodium (22Na) and chloride (36Cl) to the leaves of plants without supplying NaCl to the roots revealed great differences between the species with regards to sodium and chloride retranslocation. No correlation could be found, however, between the retranslocation rates of chloride and sodium respectively within a particular plant species. Part of the retranslocated 22Na and 36Cl had been lost through efflux from the roots. The efflux of 36Cl was low in all plant species. The efflux of 22Na was generally higher and differed considerably between the plant species, ranging from zero in sugar beet to 14% in bean. A significant positive correlation exists between this efflux of 22Na in the various plant species and the corresponding growth depression caused by an increasing supply of NaCl.

1996 ◽  
Vol 5 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Jouko Kleemola ◽  
Tuomo Karvonen

According to current scenarios, atmospheric CO2 -concentration ([CO2]) and average air temperature will rise in the future. The predicted longer growing season in Finland would imply that more productive cultivars and even new crop species could be grown. Moreover, higher [CO2] is also likely to increase dry matter production of crops. This study analyzed the growth of spring barley (Hordeum vulgare L.) under ambient and suggested future conditions, and its response to N fertilization. Model simulations of soil temperature and of snow accumulation and melting were also studied. The calibration and validation results showed that the model performed well in simulating snow dynamics, soil temperature, the growth of barley, and the response of crop growth to N fertilization under present conditions. According to the simulation runs, if a cultivar was adapted to the length of the growing period, the increase in dry matter production was 23% in a low estimate scenario of climate change, and 56% in a high estimate scenario under a high level of nitrogen fertilization. The simulation study showed that the shoot dry weight increased by 43%, on average, under high N fertilization (150-200 kg N/ha), but by less (20%) under a low level of N (25-50 kg N/ha) when the conditions under a central scenario for the year 2050 were compared with the present ones.


2019 ◽  
Vol 11 (5) ◽  
pp. 152 ◽  
Author(s):  
Daiane Conceição de Sousa ◽  
João Carlos Medeiros ◽  
Julian Junio de Jesus Lacerda ◽  
Jaqueline Dalla Rosa ◽  
Cácio Luiz Boechat ◽  
...  

The use of cover crops is an important strategy for soil management in the Brazilian Cerrado to improve no-tillage (NT) systems. For this, it is necessary know the potential of cover crop species for biomass production, nutrient cycling, and persistence of residues on the soil surface in soils and climatic conditions of this biome. Thus, the experiment was developed to evaluate the agronomic potential of cover crops cultivated on an Oxisol (Latossolo Amarelo) in the Cerrado of Piauí, Brazil. The experiment was conducted from January 2015 to July 2016. The experimental design was in randomized blocks with 11 treatments and four replicates. The treatments consisted of single and intercropped cover species. The evaluations were: dry mass production, nutritional composition of the plants, nutrient accumulation by dry mass produced and decomposition rate of the dry mass produced for each treatment. The higher dry matter production was obtained with Crotalaria juncea, Cajanus cajan (cv. IAC-Fava larga), Pennisetum glaucum and Brachiaria ruziziensis. The lower dry matter production was obtained with Mucuna aterrima, and mix of Crotalaria spectabilis + Pennisetum glaucum. The higher nutrients accumulation in the plants occurred for Cajanus cajan (cv. IAC-Fava larga), Crotalaria juncea and Crotalaria spectabilis. The cover plants studied presented good potential for soil conservation, due to the permanence of residues on the surface, except for Mucuna aterrima and Crotalaria spectabilis.


The native vegetation of Kuwait is well adapted to hyper arid environment and once these naturally vegetated plants are managed properly these may be considered potential candidates as animal feed. Bringing the neglected and underutilized native plant species into animal food chain is promising. Considering the importance of some native plants, five native forage species (Cenchrus ciliaris, Cenchrus setigerus, Lasiurus scindicus, Panicum turgidum and Pennisetum divisum) were compared to widely used exotic forage species Panicum virgatum to measure the effects of fall (October) vs spring (March) planting on the biomass yield and the nutritive value. The results indicate that four species, C. setigerus, C. ciliaris, L. scindicus and P. divisum, showed a higher dry matter production in the spring planting season with relative increase in the nutritive values, i.e., NDF, ADF, fat, protein and ash concentrations as compared to P. virgatum. In general fall season planting, decreased the dry matter production and the nutritive values compared to the spring season. These findings provided opportunities to utilize the natural resources for increasing and or improving livestock feed supply. There is potential for growers to integrate these local forage species into their forage production system.


2006 ◽  
Vol 86 (3) ◽  
pp. 865-874 ◽  
Author(s):  
Anthony R. Szumigalski ◽  
Rene C. Van Acker

Enhanced crop or cultivar diversity within annual cropping systems could provide important ecological and agronomic benefits. The agronomic effects of annual plant diversity from mixtures of crop species and barley (Hordeum vulgare L.) cultivar types were compared using richness levels of 1, 2, 5 or 10 randomly selected taxa in a greenhouse experiment. Increasing crop richness increased overall crop dry matter production, production stability (i.e., decreased CV for dry matter production) and weed suppression. These agronomic variables tended to level off after a richness of five to six crop species, suggesting that further increases in crop diversity are redundant. Increasing barley cultivar richness increased crop production in one of two experimental runs, but no effects were observed for weed suppression. Increased light interception related to greater plant canopy height variation in diverse mixtures of species could have contributed to increased productivity in the crop richness experiment. The results of this study suggest that the ecological functions of diversity provide productivity, yield stability and weed suppression benefits for mixtures of crop species, and even perhaps for mixtures of cultivars within a given crop species. Key words: Diversity (crop), suppression (weed), stability (yield), intercropping, cultivars (barley), oat (wild)


Author(s):  
Clodoaldo Moreno Paixão ◽  
Carlos Alberto Rezende Conelian ◽  
Joás Dos Santos Soares ◽  
Juliana Maria Defanti Petrazzini ◽  
Valéria Cristina Horbach

O crescimento da agricultura orgânica, associado às mudanças de padrões de consumo e exigência dos consumidores evidencia um aumento da demanda por alimentos livres de resíduos de agrotóxicos e que apresentem menores riscos à saúde e ao meio ambiente. No entanto, por outro lado, a disponibilidade de métodos alternativos ao controle químico de plantas daninhas, entre outros organismos indesejáveis aos cultivos, ainda é um grande desafio. Dessa forma, o objetivo deste trabalho foi avaliar o efeito da solarização sobre o crescimento e desenvolvimento inicial de plantas daninhas, oriundas de propágulos presentes no solo. O experimento foi realizado na Universidade de Cuiabá, entre os dias 18/01/2018 e 22/02/2018. Foi adotado o delineamento inteiramente casualizado com cinco tratamentos e cinco repetições. Os tratamentos testados correspondem a cinco tempos de solarização do solo, sendo esses: testemunha (sem solarização), solarização por 7 dias, 14 dias, 21 dias e 28 dias. Os resultados mostraram que a solarização pode ser aplicada para a supressão de plantas daninhas. Os efeitos são variados e dependem do tempo de solarização e da espécie da planta. A solarização do solo por 14 dias demonstrou redução acima de 90% da produção de massa de matéria seca de Cyperus rotundus e a solarização por 28 dias demonstrou redução de aproximadamente 70% da produção de massa de matéria seca de Chamaesyce hirta. Palavras-chave: Solarização. Cyperus Rotundus. Chamaesyce Hirta. Controle Alternativo.   Abstract The growth of organic agriculture, associated with changes in consumption patterns and consumer’s demand, shows an increase in demand for food free from  residues of pesticides and have lower  risks to health and the environment. But on the other hand, the availability of alternative methods to chemical weed control, and other unwanted organisms to crops, is still a big challenge. Thus, the aim of this study was to evaluate the effect of solarization on growth and early development of weed plants from seedlings in the soil. The experiment was conducted at University of Cuiabá, between 01/18/2018 and 02/22/2018. A completely randomized design was adopted with five treatments and five replications. The treatments correspond to five times of soil solarization, namely : control (no solarization), solarization for 7 days, 14 days, 21 days and 28 days. The results showed that the solarisation can be applied to the weeds removal. The effects are varied and depend on the solarization time and plant species. Soil Solarization for 14 days showed over 90% reduction of mass production Cyperus rotundus dry matter and solarization for 28 days showed a reduction of approximately 70% by weight of dry matter production of Chamaesyce hirta. The effects are varied and depend on the solarization time and plant species. Soil Solarization for 14 days showed over 90% reduction of mass production Cyperus rotundus dry matter and solarization for 28 days showed a reduction of approximately 70% by weight of dry matter production of Chamaesyce hirta. The effects are varied and depend on the solarization time and plant species. Soil Solarization for 14 days showed over 90% reduction of mass production Cyperus rotundus dry matter and solarization for 28 days showed a reduction of approximately 70% by weight of dry matter production of Chamaesyce hirta. Keywords: Solarization. Cyperus Rotundus. Chamaesyce Hirta. Alternative Control


Weed Science ◽  
1979 ◽  
Vol 27 (5) ◽  
pp. 549-553 ◽  
Author(s):  
David T. Patterson

The effects of shade on the growth and photosynthetic capacity of the exotic noxious weed itchgrass (Rottboellia exaltataL. f.) were determined under controlled environment conditions. The plants were grown at day/night temperatures of 29/23 C under 100, 60, 25, and 2% sunlight in a climate-controlled greenhouse. Mathematical growth analysis techniques were used to evaluate the effects of shading on dry matter production and leaf area production. Infrared gas analysis and diffusion porometry techniques were used to evaluate the effects of shading on photosynthesis and stomatal resistance. Shading markedly reduced dry matter production. At 40 days after planting, plants grown in 2, 25, and 60% sunlight had 0.3, 16, and 55%, respectively, of the dry weight of the plants grown at 100% sunlight. Leaf area production was less severely retarded by shading; the plants grown at 2, 25, and 60% sunlight had, respectively, 1.7, 42, and 99% of the leaf area of the plants grown at 100% sunlight. Ambient photosynthetic rates of recently expanded, single, fully exposed leaves were 22.5, 51.6, and 65.5 mg CO2dm-2h-1in the 25, 60, and 100% sunlight treatments, respectively. Photosynthetic rates at saturating irradiance did not differ significantly in plants grown at 25, 60, or 100% sunlight and ranged from 76.4 to 78.0 mg CO2dm-2h-1. Stomatal resistances, ranging from 6.0 to 7.5 s cm-1, also did not differ significantly among these plants. In terms of dry matter production, itchgrass is a shade-intolerant plant. However, even when grown in shade, itchgrass maintains the capacity for high photosynthetic rates and high growth rates when subsequently exposed to high irradiance. These characteristics help explain its competitiveness with crop species.


Sign in / Sign up

Export Citation Format

Share Document