Sucrose and Starch Content of Plant Parts as a Possible Indicator for Salt Tolerance

1984 ◽  
Vol 11 (6) ◽  
pp. 491 ◽  
Author(s):  
G Rathert

The effects of NaCl on total root and leaf sucrose and on total foliar starch in crops of differing salt tolerance were investigated during the early stages of salinity stress. Leaf sucrose level increased most in bushbean (sensitive) but less in rice (moderately sensitive), whereas it decreased slightly in soybean (moderately tolerant) and more in cotton (tolerant). Initial root sucrose was lowest in bushbeans, but this sensitive species showed the biggest percentage increase after salination. Foliar starch increased in sensitive crops but decreased in tolerant crops. NaCl-induced carbohydrate change in roots and laminae was correlated with tolerance of the species independently of ion-regulation behaviour. Sucrose and starch contents may assist in the selection for salt tolerance within species.

Author(s):  
Phuong Thi Bach Vu ◽  
Hong Thi Anh Pham ◽  
Phuong Ngo Diem Quach

In this study, NaCl at varrious concentrations of 4 – 10 g/L was used to investigate the salt tolerance of in vitro shoot cuttings of Chrysanthemum indicum. Morphological, physiological and biochemical changes during the response of shoot cuttings in the salinity stress were analyzed. NaCl at 6 g/L reduced the development of shoot cuttings. Under salinity stress conditions, there have just a little reduction of the chloroplast in parenchymal cells near the midrib of leaf before they turn brown and die. Besides, carotenoid, starch content, and photosynthesis intensity were decreased. In contrast, respiration rate, proline and total soluble sugar content, and the activity of IAA and gibberellin were strongly increased. The application of IAA 0.25 mg/L, zeatin 0.1 mg/L and GA3 0.1 mg/L improved the shoot development in the salinity stress condition. Shoots in MS medium supplemented with BA 0.2 mg/L, NAA 2 mg/L and NaCl 6 g/L grow better in salinity stress condition.


2015 ◽  
Vol 140 (4) ◽  
pp. 346-355 ◽  
Author(s):  
Sanalkumar Krishnan ◽  
Emily B. Merewitz

Salinity stress is becoming more prevalent in turfgrass management with the increasing use of recycled water for irrigation. Creeping bentgrass (Agrostis stolonifera) is a cool-season turfgrass species that contains significant cultivar variation in salt stress tolerance, but the mechanism related to this cultivar variation is not well understood. Our objectives were to determine whether differential hormone content could play a role in cultivar variation of salt responses and to evaluate whether cell viability assays using dye techniques could differentiate salt stress damage levels in turfgrass species. Therefore, a growth chamber study with potted plants was conducted to evaluate salt ion concentrations, physiological responses, and hormone analysis [abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), salicylic acid (SA), zeatin riboside (ZR), and ethylene] at 4, 8, and 12 dS·m−1 in relatively salt-tolerant ‘Mariner’ compared with salt-sensitive ‘Penncross’ creeping bentgrass. A hydroponics-based growth chamber study was performed for evaluation of whether dead-cell stains coupled with image analysis could be a quick method for indicating cell viability variation between cultivars. Greater salt tolerance was evident in ‘Mariner’ at 12 dS·m−1, which showed significantly lower electrolyte leakage, higher leaf relative water content (RWC), osmotic potential, photochemical efficiency, and photochemical yield compared with ‘Penncross’. A higher K+ and lower Na+ content was maintained in leaves of ‘Mariner’ compared with ‘Penncross’ while roots of ‘Mariner’ maintained higher Ca2+ content under stressed and nonstressed conditions. Phytohormone levels showed a decline in salt-stressed roots compared with nonstressed plants but ‘Mariner’ roots were able to maintain levels higher than ‘Penncross’. ‘Mariner’ leaves showed an increased accumulation of ABA, JA, SA, and ZR while roots maintained higher IAA and SA compared with ‘Penncross’. The results suggest that ‘Mariner’ was able to mitigate salt stress by better ion regulation and differential regulation of hormones compared with ‘Penncross’. ‘Mariner’ leaves and roots showed significantly lower dead cells compared with ‘Penncross’ under salt stress. The results suggest that staining for cell viability could be a useful technique for studying turfgrass stress or other cellular responses.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254189
Author(s):  
Nazanin Amirbakhtiar ◽  
Ahmad Ismaili ◽  
Mohammad-Reza Ghaffari ◽  
Raheleh Mirdar Mansuri ◽  
Sepideh Sanjari ◽  
...  

Salinity is one of the main abiotic stresses limiting crop productivity. In the current study, the transcriptome of wheat leaves in an Iranian salt-tolerant cultivar (Arg) was investigated in response to salinity stress to identify salinity stress-responsive genes and mechanisms. More than 114 million reads were generated from leaf tissues by the Illumina HiSeq 2500 platform. An amount of 81.9% to 85.7% of reads could be mapped to the wheat reference genome for different samples. The data analysis led to the identification of 98819 genes, including 26700 novel transcripts. A total of 4290 differentially expressed genes (DEGs) were recognized, comprising 2346 up-regulated genes and 1944 down-regulated genes. Clustering of the DEGs utilizing Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated that transcripts associated with phenylpropanoid biosynthesis, transporters, transcription factors, hormone signal transduction, glycosyltransferases, exosome, and MAPK signaling might be involved in salt tolerance. The expression patterns of nine DEGs were investigated by quantitative real-time PCR in Arg and Moghan3 as the salt-tolerant and susceptible cultivars, respectively. The obtained results were consistent with changes in transcript abundance found by RNA-sequencing in the tolerant cultivar. The results presented here could be utilized for salt tolerance enhancement in wheat through genetic engineering or molecular breeding.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 829 ◽  
Author(s):  
Muhammad Yasir ◽  
Shoupu He ◽  
Gaofei Sun ◽  
Xiaoli Geng ◽  
Zhaoe Pan ◽  
...  

Millions of hectares of land are too saline to produce economically valuable crop yields. Salt tolerance in cotton is an imperative approach for improvement in response to ever-increasing soil salinization. Little is known about the genetic basis of salt tolerance in cotton at the seedling stage. To address this issue, a genome-wide association study (GWAS) was conducted on a core collection of a genetically diverse population of upland cotton (Gossypium hirsutum L.) comprising of 419 accessions, representing various geographic origins, including China, USA, Pakistan, the former Soviet Union, Chad, Australia, Brazil, Mexico, Sudan, and Uganda. Phenotypic evaluation of 7 traits under control (0 mM) and treatment (150 mM) NaCl conditions depicted the presence of broad natural variation in the studied population. The association study was carried out with the efficient mixed-model association eXpedited software package. A total of 17,264 single-nucleotide polymorphisms (SNPs) associated with different salinity stress tolerance related traits were found. Twenty-three candidate SNPs related to salinity stress-related traits were selected. Final key SNPs were selected based on the r2 value with nearby SNPs in a linkage disequilibrium (LD) block. Twenty putative candidate genes surrounding SNPs, A10_95330133 and D10_61258588, associated with leaf relative water content, RWC_150, and leaf fresh weight, FW_150, were identified, respectively. We further validated the expression patterns of twelve candidate genes with qRT-PCR, which revealed different expression levels in salt-tolerant and salt-sensitive genotypes. The results of our GWAS provide useful knowledge about the genetic control of salt tolerance at the seedling stage, which could assist in elucidating the genetic and molecular mechanisms of salinity stress tolerance in cotton plants.


Sign in / Sign up

Export Citation Format

Share Document