A Model of Nutrient Response in Eucalyptus grandis Seedlings

1992 ◽  
Vol 19 (5) ◽  
pp. 459 ◽  
Author(s):  
PJ Sands ◽  
RN Cromer ◽  
MUF Kirschbaum

Rate of growth in tree seedlings is dependent (amongst other factors) on the rate at which nutrients are absorbed by roots. Rate of nutrient addition to Eucalyptus grandis seedlings influences rate of growth through three main physiological mechanisms: the effects of plant nutrient concentration on biomass partitioning, specific leaf area, and assimilation. A simple dynamic model is presented to describe growth of E. grandis seedlings in response to different relative addition rates of nitrogen and phosphorus as reflected in plant nutrient status. The model takes account of effects of nutrient concentrations on partitioning, specific leaf area and light saturated assimilation rate. Model simulations demonstrate the influence relative nutrient addition rate has on key processes that influence relative growth rate, and that the relative importance of each of these is dependent on plant nutrient status. If plants are deficient in nitrogen, changes in growth consequent upon improved nutrient status are mediated primarily through effects on assimilate partitioning and light saturated assimilation rate. If plants have high nitrogen status, changes in growth consequent upon improved nutrient status are mediated primarily through effects on specific leaf area. If plants are deficient in phosphorus, changes in growth consequent upon improved nutrient status are mediated through effects on assimilation. If plants have high phosphorus status, changes in growth consequent upon improved nutrient status are mediated through effects on both assimilation and specific leaf area.

2011 ◽  
Vol 62 (3) ◽  
pp. 248 ◽  
Author(s):  
Alejandro Radrizzani ◽  
Scott A. Dalzell ◽  
H. Max Shelton

Plant analysis is an important tool for predicting plant nutrient imbalances associated with variable soil fertility and it is usually based on analysis of index plant parts such as the youngest fully expanded leaf (YFEL). Recent use of the YFEL to diagnose plant nutrient status of Leucaena leucocephala subsp. glabrata (leucaena) pastures has given unreliable results. Two field trials, one irrigated and one dryland, were conducted in subtropical Queensland to investigate the effect of index leaf selection, plant phenology and environmental factors (ambient temperature and water stress) on leaf nutrient concentrations. The YFEL was identified as the best plant part to sample because it was readily identifiable and had consistent concentrations of most nutrients compared to older and younger leaves provided specific conditions were met when sampling. At both sites there was significant (P < 0.05) seasonal variation in nutrient concentrations in leucaena YFEL, which was poorly correlated with ambient temperature but strongly correlated with rainfall in the preceding 28 days and chronological age of YFEL. Advancing plant phenological stage of development increased the chronological age of YFEL from 12 to 73 days under irrigation since no new leaves were produced for prolonged periods during pod filling and maturation. Similarly, YFEL could be 146 days old on plants in vegetative stages of growth under prolonged drought in dryland conditions. YFEL of ~21 days of age or less were found to be optimal for analysis. Furthermore, as the calcium (Ca) concentration of YFEL was strongly correlated with leaf chronological age, this parameter could be used to determine the age of the leaves sampled. YFEL with Ca concentrations >0.75% DM were likely to be >21 days in age and should not be used for the diagnosis of plant nutrient status. It was concluded that leaf analysis could be used to confidently assess leucaena plant nutrient status provided the YFEL were sampled from actively growing plants in vegetative development that had received rainfall/irrigation in the preceding 28 days and were <21 days of age.


HortScience ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 540-545 ◽  
Author(s):  
Bernadine C. Strik

Primocane-fruiting blackberry (Rubus L. subgenus Rubus, Watson) cultivars, Prime-Jan® and Prime-Jim®, grown only for a primocane crop, were studied for 2 years to evaluate whether this type of blackberry should be sampled at a certain stage of development or time of season to best evaluate plant nutrient status. Leaves were sampled every 2 weeks from a primocane height of ≈0.75 m in spring through fruit harvest in autumn and were analyzed to determine concentration of macro- and micronutrients. Primocanes were summer pruned at 1.4 m, by hedging to a height of 1.0 m, to induce branching, a standard commercial practice. Leaf nutrient concentration was related to stage of primocane growth and development and whether the leaves originated on the main cane or on the branches that resulted from summer pruning. Nutrient concentration of leaves sampled on the main primocane from early growth in spring until early branch growth in summer was significantly affected by cultivar, year, and week for most nutrients. When leaf sampling occurred on the older leaves of the main cane (for 4 weeks after hedging), the concentration of Ca, Mg, B, Fe, Mn, and Al increased, likely a result of the relative immobility of most of these nutrients. When samples were taken on primocane branches, leaf N, Mg, S, B (2009 only), Fe, Mn, Cu (2009 only), Zn, and Al concentrations did not differ between samples taken 6–8 weeks after summer pruning or hedging. Leaf K and Ca were more stable when sampling was done from weeks 8 to 10 (early bloom to green/early red fruit). There was a significant difference in leaf P among all weeks sampled during this period. A sample date corresponding to early green fruit stage (week 8) would thus likely provide the best compromise for assessing plant nutrient status in this crop. During this stage of development the nutrient concentrations measured for both cultivars and years, were within the present recommended nutrient sufficiency levels for other blackberry and raspberry crops for all except leaf K and P which were below current standards. The results suggest leaf sampling primocane-fruiting blackberry at the early green fruit stage (about 8 weeks after summer pruning) rather than a particular calendar date. The present leaf sufficiency range for P and K may need to be lowered for this crop. In addition, sampling cultivars separately for tissue analysis would still be advised to better manage nutrient programs.


1992 ◽  
Vol 19 (1) ◽  
pp. 55 ◽  
Author(s):  
MUF Kirschbaum ◽  
DW Bellingham ◽  
RN Cromer

Eucalyptus grandis seedlings were grown in growth units in which plant roots were suspended in air while continuously being sprayed with nutrient solution (aeroponic system). Phosphorus was added to nutrient solutions in exponentially increasing amounts which determined plant growth. Phosphorus was added at five different relative addition rates. The proportion of dry matter in stems increased with plant size, but was independent of plant internal phosphorus concentration. In contrast, the ratio of root to leaf dry weight decreased almost 2-fold with increasing phosphorus concentration but changed little with plant size, and specific leaf area more than doubled with increasing phosphorus concentration. Carbon fixation rate per unit plant dry weight increased about 5-fold with increasing nutrient addition rate over the range of addition rates used. That increase was due to a doubling in specific leaf area and a doubling in assimilation rate per unit leaf area, while leaf weight as a fraction of total plant dry weight increased by about 20%.


1998 ◽  
Vol 28 (5) ◽  
pp. 729-736 ◽  
Author(s):  
Raynald Paquin ◽  
Hank A Margolis ◽  
René Doucet

The effect of nutrient addition (fertilization with N, P, and K at a rate of 448, 224, and 224 kg ·ha-1, respectively) on height growth, root biomass, leaf area, and foliar nutrient concentrations of slow-growing layers and newly planted seedlings of black spruce (Picea mariana (Mill.) BSP) was evaluated on an apparently productive mesic site in Quebec. Annual height growth increment of fertilized layers was greater than 20 cm ·year-1compared with 3-4 cm ·year-1for the other three treatments. Fine root biomass (< 2 mm in diameter) and leaf area growth were significantly higher for fertilized layers and seedlings compared with their respective controls. For both current and 1-year-old needles, foliar N concentration on a unit leaf area basis increased significantly for both layers and seedlings, and vector analysis showed that, in all cases, N was the most limiting nutrient. Five growing seasons after treatment, the only residual effect of fertilization on foliar nutrient concentrations was higher foliar N in fertilized seedlings. Thus, it appears that the slow growth of the unfertilized layers on this site was due to resource limitation rather than to the type of regeneration as such.


2010 ◽  
Vol 34 (1) ◽  
pp. 115-124 ◽  
Author(s):  
Roberto Santos Trindade ◽  
Adelson Paulo Araújo ◽  
Marcelo Grandi Teixeira

Low phosphorus supply markedly limits leaf growth and genotypes able to maintain adequate leaf area at low P could adapt better to limited-P conditions. This work aimed to investigate the relationship between leaf area production of common bean (Phaseolus vulgaris) genotypes during early pod filling and plant adaptation to limited P supply. Twenty-four genotypes, comprised of the four growth habits in the species and two weedy accessions, were grown at two P level applied to the soil (20 and 80 mg kg-1) in 4 kg pots and harvested at two growth stages (pod setting and early pod filling). High P level markedly increased the leaf number and leaf size (leaf area per leaf), slightly increased specific leaf area but did not affect the net assimilation rate. At low P level most genotypic variation for plant dry mass was associated with leaf size, whereas at high P level this variation was associated primarily with the number of leaves and secondarily with leaf size, specific leaf area playing a minor role at both P level. Determinate bush genotypes presented a smaller leaf area, fewer but larger leaves with higher specific leaf area and lower net assimilation rate. Climbing genotypes showed numerous leaves, smaller and thicker leaves with a higher net assimilation rate. Indeterminate bush and indeterminate prostrate genotypes presented the highest leaf area, achieved through intermediate leaf number, leaf size and specific leaf area. The latter groups were better adapted to limited P. It is concluded that improved growth at low P during early pod filling was associated with common bean genotypes able to maintain leaf expansion through leaves with greater individual leaf area.


2000 ◽  
Vol 30 (9) ◽  
pp. 1400-1409 ◽  
Author(s):  
L Norgrove ◽  
S Hauser

Tree litter fall was monitored for 2 years in two Terminalia ivorensis A. Chev. plantations in the humid tropics of southern Cameroon. The plantations were 6 and 17 years old when they were each thinned to two timber stand densities (TSD) and understorey food crops were introduced. Leaf litter was the predominant litter fraction in all treatments. Treatment means of specific leaf area for T. ivorensis ranged from 83.7 to 100.7 cm2·g-1. Litter-fall production, leaf area per tree, and leaf area index for T. ivorensis were all higher in year 2 than in year 1. There was near complete defoliation of the T. ivorensis stand by Epicerura sp. (Lepidoptera: Notodontidae) caterpillars in the month just before the start of litter-fall sampling. This is the first report of an Epicerura sp. from Cameroon. Terminalia ivorensis leaf litter production per tree, specific leaf area, and leaf litter nutrient concentrations showed few significant differences between TSD treatments. This lack of response suggests that T. ivorensis is a suitable species for growing at stand densities lower than is normal silvicultural practice in association with food crops.


2018 ◽  
Vol 115 (21) ◽  
pp. 5480-5485 ◽  
Author(s):  
Jeanne L. D. Osnas ◽  
Masatoshi Katabuchi ◽  
Kaoru Kitajima ◽  
S. Joseph Wright ◽  
Peter B. Reich ◽  
...  

Understanding variation in leaf functional traits—including rates of photosynthesis and respiration and concentrations of nitrogen and phosphorus—is a fundamental challenge in plant ecophysiology. When expressed per unit leaf area, these traits typically increase with leaf mass per area (LMA) within species but are roughly independent of LMA across the global flora. LMA is determined by mass components with different biological functions, including photosynthetic mass that largely determines metabolic rates and contains most nitrogen and phosphorus, and structural mass that affects toughness and leaf lifespan (LL). A possible explanation for the contrasting trait relationships is that most LMA variation within species is associated with variation in photosynthetic mass, whereas most LMA variation across the global flora is associated with variation in structural mass. This hypothesis leads to the predictions that (i) gas exchange rates and nutrient concentrations per unit leaf area should increase strongly with LMA across species assemblages with low LL variance but should increase weakly with LMA across species assemblages with high LL variance and that (ii) controlling for LL variation should increase the strength of the above LMA relationships. We present analyses of intra- and interspecific trait variation from three tropical forest sites and interspecific analyses within functional groups in a global dataset that are consistent with the above predictions. Our analysis suggests that the qualitatively different trait relationships exhibited by different leaf assemblages can be understood by considering the degree to which photosynthetic and structural mass components contribute to LMA variation in a given assemblage.


2015 ◽  
Vol 25 (4) ◽  
pp. 452-459 ◽  
Author(s):  
Bernadine C. Strik ◽  
David R. Bryla

Raspberry and blackberry (Rubus sp.) plantings have a relatively low nutrient requirement compared with many other perennial fruit crops. Knowledge of annual accumulation of nutrients and periods of rapid uptake allows for better management of fertilization programs. Annual total nitrogen (N) accumulation in the aboveground plant ranged from 62 to 110 and 33 to 39 lb/acre in field-grown red raspberry (Rubus idaeus) and blackberry (Rubus ssp. rubus), respectively. Research on the fate of applied 15N (a naturally occurring istope of N) has shown that primocanes rely primarily on fertilizer N for growth, whereas floricane growth is highly dependent on stored N in the over-wintering primocanes, crown, and roots; from 30% to 40% of stored N was allocated to new growth. Plants receiving higher rates of N fertilizer took up more N, often leading to higher N concentrations in the tissues, including the fruit. Reallocation of N from senescing floricanes and primocane leaves to canes, crown, and roots has been documented. Accumulation of other macro- and micronutrients in plant parts usually preceded growth. Primocanes generally contained the highest concentration of most nutrients during the growing season, except calcium (Ca), copper (Cu), and zinc (Zn), which often were more concentrated in roots. Roots typically contained the highest concentration of all nutrients during winter dormancy. Nutrient partitioning varied considerably among elements due to different nutrient concentrations and requirements in each raspberry and blackberry plant part. This difference not only affected the proportion of each nutrient allocated to plant parts, but also the relative amount of each nutrient lost or removed during harvest, leaf senescence, and pruning. Macro- and micronutrient concentrations are similar for raspberry and blackberry fruit, resulting in a similar quantity of nutrient removed with each ton of fruit at harvest; however, yield may differ among cultivars and production systems. Nutrient removal in harvested red raspberry and blackberry fruit ranged from 11 to 18 lb/acre N, 10 to 19 lb/acre potassium (K), 2 to 4 lb/acre phosphorus (P), 1 to 2 lb/acre Ca, and 1 to 4 lb/acre magnesium (Mg). Pruning senescing floricanes in August led to greater plant nutrient losses than pruning in autumn. Primocane leaf nutrient status is often used in nutrient management programs. Leaf nutrient concentrations differ with primocane leaf sampling time and cultivar. In Oregon, the present recommended sampling time of late July to early August is acceptable for floricane-fruiting raspberry and blackberry types, and primocane-fruiting raspberry, but not for primocane-fruiting blackberry, where sampling leaves on primocane branches during the green fruit stage is recommended. Presently published leaf tissue standards appear to be too high for K in primocane-fruiting raspberry and blackberry, which is not surprising since the primocanes are producing fruit at the time of sampling and fruit contain a substantial amount of K.


1990 ◽  
Vol 17 (5) ◽  
pp. 527 ◽  
Author(s):  
MUF Kirschbaum ◽  
D Tompkins

Eucalyptus grandis seedlings were grown in growth units in which plant roots were suspended in air while continuously being sprayed with nutrient solution (aeroponic system). Phosphorus was added to nutrient solutions in exponentially increasing amounts which determined plant growth rates. Plants were grown at five relative phosphorus addition rates, and photosynthetic performance of leaves was compared across treatments. Carbon assimilation rates ranged from 11.7 μmol m-2 s-1 for plants with lowest phosphorus status to 23.1 μmol m-2 s-1 for plants with highest phosphorus status. Intercellular partial pressures of CO2 concomitantly decreased from 260 pbar for plants with lowest to 220 μbar for plants with highest phosphorus status. Leaves in all treatments showed a decrease in assimilation rate at intercellular partial pressures of CO2 above c. 600 μbar. There was no consistent correlation between the extent of that decrease and the phosphorus status of leaves. Assimilation rates were correlated with leaf phosphorus content. This relationship was apparent on either a unit leaf area or unit leaf weight basis. Assimilation rates and leaf nitrogen content per unit leaf weight were also correlated. In contrast, there was no correlation between leaf assimilation rate per unit leaf area and nitrogen content per unit leaf area, as nitrogen content per unit area was similar for all phosphorus treatments. The differences between correlations on a weight and area basis were due to differences in specific leaf area in different treatments, with plants with lower phosphorus status having less leaf area per unit leaf weight. The photosynthetic measurements showed that CO2 assimilation rate, together with relative leaf growth rate, was one of the processes most sensitive to phosphorus nutrition.


Sign in / Sign up

Export Citation Format

Share Document