Altered epigenetic variance in surviving litters from nutritionally restricted lactating primiparous sows

2007 ◽  
Vol 19 (3) ◽  
pp. 430 ◽  
Author(s):  
M. D. Vinsky ◽  
G. K. Murdoch ◽  
W. T. Dixon ◽  
M. K. Dyck ◽  
G. R. Foxcroft

Feed restriction of primiparous sows during the last week of lactation has been shown to decrease embryonic growth and female embryo survival to Day 30 of gestation. This study sought to determine whether global DNA methylation and epigenetic gene expression of the candidate genes Igf2, Igf2r, and Xist were associated with these treatment effects. Given that these epigenetic traits are expected to be important for embryo viability, changes in variance for these traits at Day 30 were predicted to be reflected in the loss of abnormal embryos at this time. Consistent with this prediction, variance in DNA methylation was reduced (P < 0.001) in Restrict male embryo, and there was a tendency for reduced variance (P < 0.06) in Restrict female embryos. Variation in DNA methylation tended to be correlated (R = 0.42, P < 0.1) with the difference in variance of embryo weights between treatments (P < 0.01), suggesting a relationship between epigenetic changes and embryonic development. Variance in Igf2r expression tended to decrease (P < 0.07) in Restrict female embryos while variance in Xist expression tended to decrease in Restrict male embryos (P < 0.08), suggesting that maternally inherited epigenetic defects may cause female embryonic loss and reduced growth before Day 30 of gestation.

2006 ◽  
Vol 18 (3) ◽  
pp. 347 ◽  
Author(s):  
M. D. Vinsky ◽  
S. Novak ◽  
W. T. Dixon ◽  
M. K. Dyck ◽  
G. R. Foxcroft

This study explored the possibility of sex-specific effects on embryonic survival in primiparous sows subjected to restricted feed intake during the last week of lactation and bred after weaning (Restrict; n = 16), compared with control sows fed close to ad libitum feed intakes (Control; n = 17). Restrict sows were in a substantial negative net energy balance at weaning, and lost 13% of estimated protein and 17% of fat mass during lactation, yet the weaning-to-oestrous interval and ovulation rate were not different between treatments. However, embryonic survival at Day 30 of gestation was lower (P < 0.05) in Restrict than Control sows, and selectively reduced the proportion of female embryos surviving (P < 0.01). A decrease in weight and crown–rump length of surviving female (P < 0.05) and male (P < 0.05) embryos was seen in Restrict litters. The mechanisms mediating this sex-specific effect on embryonic loss in feed-restricted sows are unclear. The data presented here indicate that feed-restriction during the last week of lactation in primiparous sows causes a selective decrease in survival of female embryos and limits the growth of all surviving embryos.


2019 ◽  
Vol 16 (4) ◽  
pp. 386-391 ◽  
Author(s):  
Kenneth Lundstrom

Epigenetic mechanisms comprising of DNA methylation, histone modifications and gene silencing by RNA interference have been strongly linked to the development and progression of various diseases. These findings have triggered research on epigenetic functions and signal pathways as targets for novel drug discovery. Dietary intake has also presented significant influence on human health and disease development and nutritional modifications have proven important in prevention, but also the treatment of disease. Moreover, a strong link between nutrition and epigenetic changes has been established. Therefore, in attempts to develop novel safer and more efficacious drugs, both nutritional requirements and epigenetic mechanisms need to be addressed.


2020 ◽  
Vol 16 (2) ◽  
pp. 86-92
Author(s):  
Rafael Penadés ◽  
Bárbara Arias ◽  
Mar Fatjó-Vilas ◽  
Laura González-Vallespí ◽  
Clemente García-Rizo ◽  
...  

Background: Epigenetic modifications appear to be dynamic and they might be affected by environmental factors. The possibility of influencing these processes through psychotherapy has been suggested. Objective: To analyse the impact of psychotherapy on epigenetics when applied to mental disorders. The main hypothesis is that psychological treatments will produce epigenetic modifications related to the improvement of treated symptoms. Methods: A computerised and systematic search was completed throughout the time period from 1990 to 2019 on the PubMed, ScienceDirect and Scopus databases. Results: In total, 11 studies were selected. The studies were evaluated for the theoretical framework, genes involved, type of psychotherapy and clinical challenges and perspectives. All studies showed detectable changes at the epigenetic level, like DNA methylation changes, associated with symptom improvement after psychotherapy. Conclusion: Methylation profiles could be moderating treatment effects of psychotherapy. Beyond the detected epigenetic changes after psychotherapy, the epigenetic status before the implementation could act as an effective predictor of response.


Epigenomics ◽  
2021 ◽  
Author(s):  
Markos Tesfaye ◽  
Suvo Chatterjee ◽  
Xuehuo Zeng ◽  
Paule Joseph ◽  
Fasil Tekola-Ayele

Aim: To investigate the association between placental genome-wide methylation at birth and antenatal depression and stress during pregnancy. Methods: We examined the association between placental genome-wide DNA methylation (n = 301) and maternal depression and stress assessed at six gestation periods during pregnancy. Correlation between DNA methylation at the significantly associated CpGs and expression of nearby genes in the placenta was tested. Results: Depression and stress were associated with methylation of 16 CpGs and two CpGs, respectively, at a 5% false discovery rate. Methylation levels at two of the CpGs associated with depression were significantly associated with expression of ADAM23 and CTDP1, genes implicated in neurodevelopment and neuropsychiatric diseases. Conclusion: Placental epigenetic changes linked to antenatal depression suggest potential fetal brain programming. Clinical trial registration number: NCT00912132 (ClinicalTrials.gov)


2019 ◽  
Author(s):  
Patrick J Murphy ◽  
Jingtao Guo ◽  
Timothy G Jenkins ◽  
Emma R James ◽  
John R Hoidal ◽  
...  

SUMMARYPaternal cigarette smoke (CS) exposure is associated with increased risk of behavioral disorders and cancer in offspring, but the mechanism has not been identified. This study used mouse models to evaluate: 1) what impact paternal CS exposure has on sperm DNA methylation (DNAme), 2) whether sperm DNAme changes persist after CS exposure ends, 3) the degree to which DNAme and gene expression changes occur in offspring and 4) the mechanism underlying impacts of CS exposure. We demonstrate that CS exposure induces sperm DNAme changes that are partially corrected within 28 days of removal from CS exposure. Additionally, paternal smoking causes changes in neural DNAme and gene expression in offspring. Remarkably, the effects of CS exposure are largely recapitulated in oxidative stress-compromised Nrf2-/- mice and their offspring, independent of paternal smoking. These results demonstrate that paternal CS exposure impacts offspring phenotype and that oxidative stress underlies CS induced heritable epigenetic changes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yoshifumi Kasuga ◽  
Tomoko Kawai ◽  
Kei Miyakoshi ◽  
Yoshifumi Saisho ◽  
Masumi Tamagawa ◽  
...  

The detection of epigenetic changes associated with neonatal hypoglycaemia may reveal the pathophysiology and predict the onset of future diseases in offspring. We hypothesized that neonatal hypoglycaemia reflects the in utero environment associated with maternal gestational diabetes mellitus. The aim of this study was to identify epigenetic changes associated with neonatal hypoglycaemia. The association between DNA methylation using Infinium HumanMethylation EPIC BeadChip and neonatal plasma glucose (PG) level at 1 h after birth in 128 offspring born at term to mothers with well-controlled gestational diabetes mellitus was investigated by robust linear regression analysis. Cord blood DNA methylation at 12 CpG sites was significantly associated with PG at 1 h after birth after adding infant sex, delivery method, gestational day, and blood cell compositions as covariates to the regression model. DNA methylation at two CpG sites near an alternative transcription start site of ZNF696 was significantly associated with the PG level at 1 h following birth (false discovery rate-adjusted P &lt; 0.05). Methylation levels at these sites increased as neonatal PG levels at 1 h after birth decreased. In conclusion, gestational diabetes mellitus is associated with DNA methylation changes at the alternative transcription start site of ZNF696 in cord blood cells. This is the first report of DNA methylation changes associated with neonatal PG at 1 h after birth.


2019 ◽  
Vol 47 (1) ◽  
Author(s):  
Lain Uriel Ohlweiler ◽  
Joana Claudia Mezzalira ◽  
Alceu Mezzalira

Background: Porcine embryos are sensible to all assisted reproduction manipulations, especially the ones that involve cryopreservation. Despite the high cryoprotectant concentrations routinely applied, vitrification is the most effective technique to date. These substances toxicity can also play a negative role in embryo viability. During in vitro porcine embryo production, the speed of development is often unevenly distributed. It is possible that their development speed, affects embryo tolerance to cryoprotectants. This study aimed to evaluate the toxicity of porcine embryos of days 5 or 6 of culture to cryoprotectant agents; as well as to assess embryo survival to vitrification.Material, Methods & Results: Parthenogenetic porcine blastocysts and expanded blastocysts of days 5 and 6 of culture were exposed to toxicity tests (experiments 1 and 2) and vitrification (experiment 3) using different protocols. In the first experiment, three different cryoprotectants were used (Dimethyl sulfoxide - DMSO, Ethylene glycol – EG, and Sucrose - SUC), combined in three different associations (G1: 15% EG + 15% DMSO with 0.5M SUC; G2: 16% EG + 16% DMSO with 0.4M SUC; G3: 18% EG + 18% DMSO with 0.5M SUC). In the fresh Control, embryos of day 6 are more sensible than the ones of day 5, whom showed a lower hatching rate (39.7 vs. 60.8%). After the toxicity (Experiment 1) test, the G1 showed better expansion rates in day 6 (50.0 vs 31.0 and 3.6% for G2 and G3) and higher hatching of day 6 compared to G2 and G3 (23.2, vs. 8.6 and 0.0% for G2 and G3). The fresh non hatched embryos at day 8, derived at day 6, had a lower percentage of cells with cleaved caspase-3 (20.2%) compared with the G1 (30.5%), G2 (31.4%) and G3 (30.5%). The hatched embryos of day 5 from G2 had lower total cell number (TCN) compared with the day 6 hatched embryos, whereas in G1 the TCN was not affected. The second experiment compared EG combined to one of these three extracellular cryoprotectants: Polyvinylpyrrolidone/sucrose/trehalose (respectively groups: PVP, SUC, TRE). The group SUC has raised the best results for day 5 embryos, whereas for day 6 embryos SUC and TRE were both best. The third experiment tested four vitrification protocols, being P1: EG+DMSO+TRE/warming with SUC; P2: EG+DMSO+TRE/warming TRE; P3: EG+TRE/ warming SUC; P4: EG+TRE/warming TRE. The expansion of vitrified day 5 embryos was higher in the P1 (20.0%) in comparison with the other three groups (4.3, 4.3 and 4.4% for P2, P3 and P4, respectively), with no difference for their hatching rates, been it lower comparing to the Control. Day 6 embryos showed no difference in expansion and hatching for the vitrified groups, been them lower than the Control.Discussion: Embryos obtained on day 6 are more sensible than the ones of day 5, fact observed when the embryos were exposed to cryoprotectant solution, as well by the behavior of the no treated Control embryos. The toxicity increases as it does the concentration of intracellular cryoprotectant, where over 16% of the intracellular cryoprotectors already affected the day 6 embryos development. For the day 5 embryos however, 15 or 16% of the intracellular cryoptrotectors, had similar behavior to the embryos. For the extracellular solutions, however, it is variable according the embryos development speed. Indeed, it is necessary to adjust the cryoprotectors to be used to cryopreserve porcine in vitro produced embryos obtained at days 5 and 6 of culture.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi1-vi1
Author(s):  
Erika Yamazawa ◽  
Shota Tanaka ◽  
Genta Nagae ◽  
Takayoshi Umeda ◽  
Taijun Hana ◽  
...  

Abstract BACKGROUND Ependymomas are currently classified into 9 subgroups by DNA methylation profiles. Although spinal cord ependymoma (SP-EPN) is distinct from other tumors, diversity within SP-EPN is still unclear. Here, we used transcriptomic and epigenomic profiles to investigate the diversity among Japanese SP-EPN cases. MATERIALS AND METHODS We analyzed 57 SP-EPN patients (32 males and 25 females, aged from 18 to 78 years, median: 52), including two cases of neurofibromatosis type 2, five cases of grade 3 (WHO grade). We obtained transcriptome (RNA-seq) and DNA methylation (Infinium Methylation EPIC array) data from fresh frozen specimens of SP-EPN resected at the University of Tokyo Hospital and our collaborative groups. RESULTS Three cases had a previous intracranial ependymoma operation. Hierarchical clustering of the DNA methylation data showed that these three cases of intracranial origin as a different cluster from spinal origin. The 45 grade 2 spinal ependymoma showed a relatively homogenous methylation pattern. However, the methylation status of HOX gene cluster regions is compatible with the segment of origin, which reflects the cells of origins are derived after the determination of segment identity. RNA sequencing of 57 cases revealed two subgroups within grade 2. Gene ontology analysis of differentially expressed genes suggested the difference in metabolic state such as rRNA translation and mitochondrial respiration between the two expression subgroups. CONCLUSION Epigenetic analysis indicated the accurate body segment origin of SP-EPN. We observed that metabolic states could divide grade 2 spinal cord ependymoma into 2 subgroups and will present the relationship to clinicopathological information.


Mutagenesis ◽  
2020 ◽  
Author(s):  
Kristina Daniunaite ◽  
Agne Sestokaite ◽  
Raimonda Kubiliute ◽  
Kristina Stuopelyte ◽  
Eeva Kettunen ◽  
...  

Abstract Cancer deaths account for nearly 10 million deaths worldwide each year, with lung cancer (LCa) as the leading cause of cancer-related death. Smoking is one of the major LCa risk factors, and tobacco-related carcinogens are potent mutagens and epi-mutagens. In the present study, we aimed to analyse smoking-related epigenetic changes in lung tissues from LCa cases. The study cohort consisted of paired LCa and noncancerous lung tissues (NLT) from 104 patients, 90 of whom were smokers or ex-smokers (i.e. ever smokers) at the time of diagnosis. DNA methylation status of tumour suppressor genes DAPK1, MGMT, p16, RASSF1 and RARB was screened by means of methylation-specific PCR (MSP) and further analysed quantitatively by pyrosequencing. Methylation of at least one gene was detected in 59% (61 of 104) of LCa samples and in 39% (41 of 104) of NLT. DAPK1 and RASSF1 were more frequently methylated in LCa than in NLT (P = 0.022 and P = 0.041, respectively). The levels of DNA methylation were higher in LCa than NLT at most of the analysed CpG positions. More frequent methylation of at least one gene was observed in LCa samples of ever smokers (63%, 57 of 90) as compared with never smokers (36%, 5 of 14; P = 0.019). In the ever smokers group, methylation of the genes also occurred in NLT, but was rare or absent in the samples of never smokers. Among the current smokers, RASSF1 methylation in LCa showed association with the number of cigarettes smoked per day (P = 0.017), whereas in NLT it was positively associated with the duration of smoking (P = 0.039). Similarly, p16 methylation in LCa of current smokers correlated with the larger number of cigarettes smoked per day (P = 0.047). Overall, DNA methylation changes were present in both cancerous and noncancerous tissues of LCa patients and showed associations with smoking-related parameters.


Sign in / Sign up

Export Citation Format

Share Document