scholarly journals Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro

2017 ◽  
Vol 29 (1) ◽  
pp. 66 ◽  
Author(s):  
Krishna C. Pavani ◽  
Carmen Alminana ◽  
Eline Wydooghe ◽  
Maaike Catteeuw ◽  
Miguel A. Ramírez ◽  
...  

In vitro, efficient communication between mammalian embryos in groups or between embryos and cocultured somatic cells implies that there is a sender, a message and a receiver that is able to decode the message. Embryos secrete a variety of autocrine and paracrine factors and, of these, extracellular vesicles have recently been implicated as putative messengers in embryo–embryo communication, as well as in communication of the embryo with the maternal tract. Extracellular vesicles (EVs) are membrane-bound vesicles that are found in biofluids and in culture media conditioned by the presence of embryos or cells. EVs carry and transfer regulatory molecules, such as microRNAs, mRNAs, lipids and proteins. We conducted a systematic search of the literature to review and present the currently available evidence regarding the possible roles of EVs in in vitro embryo communication and embryo development. It is important to note that there is limited information available on the molecular mechanisms and many of the biologically plausible functions of EVs in embryo communication have not yet been substantiated by conclusive experimental evidence. However, indirect evidence, such as the use of media conditioned by embryos or by somatic cells with improved embryo development as a result, may indicate that EVs can be an important asset for the development of tailor-made media, allowing better embryo development in vitro, even for single embryo culture.

2017 ◽  
Vol 29 (1) ◽  
pp. 178
Author(s):  
E. Mellisho ◽  
A. Velasquez ◽  
M. J. Nuñez ◽  
L. Rodriguez-Alvarez

Pre-implantation embryos secrete extracellular vesicles (EV) most likely to communicate with the surroundings. The objective of this study was to determine the distribution (size and concentration) of EV secreted by bovine pre-implantation embryos with different developmental competence. The IVF bovine embryos were produced from oocytes recovered from slaughterhouse ovaries. Presumptive zygotes were in vitro cultured (IVC) in groups in 4-well plates (30 zygotes per 500-µL well) using SOFaa medium at 39°C under 5% CO2, 5% O2, and 90% N2 until the morula stage (Day 5 post IVF). Morulae were cultured individually in 96 well at 39°C under until blastulation time (Day 6.5–7.5) in EV-free SOF medium. Culture medium was collected only from embryos that developed to the blastocyst stage that were classified in a group of early (Day 6.5) or late (Day 7.5) blastulation. Blastocysts were kept in culture until Day 11 to assess embryo developmental competence, considering embryo size (>350 µm) and total cell count (>500 blastomeres). For EV analysis, 4 groups were organised a posteriori: G1: Day 6.5-competent; G2: Day 6.5-not competent; G3: Day 7.5-competent; G4: Day 7.5-not competent. The EV in culture media were analysed using a nanoparticle tracking analysis (Nanosight NS300). Statistical analysis was performed using the InfoStat program (Buenos Aires, Argentina). Differences were considered significant at P < 0.05. Early blastulation rate (Day 6.5) was 40.3% (112/278), whereas late blastulation rate (Day 7.5) was 20.5% (57/278), showing a significant difference (P < 0.0001). Embryos derived from Day 6.5 blastocysts have a higher probability (39.3%: 44/112) of posthatching development [until Day 11; Day 7.5, 10.5% (6/57); P = 0.0001]. At Day 11, competent embryos (G1) derived from Day 6.5 blastocysts have a higher diameter and total cell number (447 µm; 688 cells) than those derived from Day 7.5 blastocysts (G3; 405 µm, 598 cells; P < 0.05 for both parameters). It was possible to detect EV from collected medium of individual embryos independent of their competence. Neither the EV size nor the EV concentration was statistically different between Day 6.5 and Day 7.5 blastocysts (without considering their further competence; 2.9 × 108, 147 nm; and 3.0 × 108, 149 nm, respectively). However, independent of the day of blastulation, competent embryos had a significantly lower concentration of EV (2.7 × 108 v. 3.3 × 108; P = 0.03). Moreover, competent embryos from early and late blastocysts (G1 and G3) tend to produce a lower amount of EV (G1: 2.8 × 108; G2: 3 × 108; G3: 2.6 × 108; G4: 3.5 × 108; P = 0.05). Furthermore, EV concentration was statistically different between G3 and G4 (P = 0.002). No differences in EV size were observed among groups (G1: 145 nm; G2: 148 nm; G3: 146 nm; G4: 151 nm). Our results provide an initial approach to study the EV secreted by individual pre-implantation embryos to assess their competence. From these results, we can conclude that blastulation time affects the future development of bovine embryos and a model based on blastulation time and EV secretion could be a simple noninvasive tool to improve embryo selection.


2019 ◽  
Vol 31 (1) ◽  
pp. 156 ◽  
Author(s):  
B. Melo-Baez ◽  
E. Mellisho ◽  
L. Rodriguez-Alvarez

Extracellular vesicles (EV) are currently considered a mechanism of cell communication. These are secreted from different cell types, including embryos, to serve as mediators of short and long distance signals. EV can be identified in vivo in different biological fluids, as well as in vitro embryo culture medium. Usually, media used for embryo in vitro culture are supplemented with serum or other protein sources that favour cell proliferation and development. Serum and protein sources contain EV, including microvesicles and exosomes that in principle can be internalized by embryonic cells. The aim of this study was to evaluate if serum-derived EV are internalized by the embryo at different stages of the early development, and if EV from the serum are required for in vitro bovine embryo development. For that, it was first evaluated if EV depleted culture media affect embryo development up to the blastocyst stage; oocytes were in vitro matured for 22 to 23h and in vitro fertilized for 18h. Posteriorly, presumptive zygotes were in vitro cultured in groups (25 embryos/well in 4-well plates) in SOF or SOF depleted of EV for 8 days. To evaluate EV internalization, culture media was supplemented with labelled EV and confocal imaging was performed. The EV were obtained by ultrafiltration (centrifugal filter devices 100 kDa, Amicon; Millipore, Billerica, MA, USA) for 15min at 3000 rpm. Then, EV were stained with PKH67 dye and washed 3 times with PBS by ultrafiltration to remove excess dye. The EV labelled with PKH67 were resuspended in SOFaa depleted of EV (3×109 particles per 500µL) and supplemented for 24h at the 1-cell stage (Day 1 post IVF), 16 cells (Day 4 post IVF), and early blastocyst (Day 6 post IVF) in 5% CO2, 5% O2, and 90% N2. PBS with PKH67 dye was used as a control treatment. Hoechst 33343 was used to label the nuclei before washing with PBS and fixation with 0.4% paraformaldehyde. Images were acquired on a Zeiss (Zeiss, Jena, Germany) LSM 780 confocal microscope. There were no statistical differences on blastocyst rate at Day 8 between embryos cultured in SOF depleted of EV (19.5%) and control group (SOF; 22.7%; P&gt;0.05). We observed punctuated green fluorescence near the embryo nuclei in the 3 stages studied in embryos supplemented with EV but not in the control treatment, which indicates that EV from serum are uptaken by embryonic cells in early development. Therefore, we demonstrated uptake of EV from fetal calf serum added to culture media, although its absence does not affect embryo development. Research was supported by FONDECYT, Chile (1170310).


Author(s):  
Aliosha I. Figueroa-Valdés ◽  
Catalina de la Fuente ◽  
Yessia Hidalgo ◽  
Ana María Vega-Letter ◽  
Rafael Tapia-Limonchi ◽  
...  

Cell therapy is witnessing a notable shift toward cell-free treatments based on paracrine factors, in particular, towards small extracellular vesicles (sEV), that mimic the functional effect of the parental cells. While numerous sEV-based applications are currently in advanced preclinical stages, their promised translation depends on overcoming the manufacturing hurdles posed by the large-scale production of purified sEV. Unquestionably, the culture medium used with the parental cells plays a key role in the sEV’s secretion rate and content. An essential requisite is the use of a serum-, xeno-, and blood-free medium to meet the regulatory entity requirements of clinical-grade sEV’s production. Here, we evaluated OxiumTMEXO, a regulatory complying medium, with respect to production capacity and conservation of the EV’s characteristics and functionality and the parental cell’s phenotype and viability. A comparative study was established with standard DMEM and a commercially available culture medium developed specifically for sEV production. Under similar conditions, OxiumTMEXO displayed a three-fold increase of sEV secretion, with an enrichment of particles ranging between 51 and 200 nm. These results were obtained through direct quantification from the conditioned medium to avoid the isolation method’s interference and variability and were compared to the two culture media under evaluation. The higher yield obtained was consistent with several harvest time points (2, 4, and 6 days) and different cell sources, incluiding umbilical cord-, menstrual blood-derived mesenchymal stromal cells and fibroblasts. Additionally, the stem cell phenotype and viability of the parental cell remained unchanged. Furthermore, OxiumTMEXO-sEV showed a similar expression pattern of the vesicular markers CD63, CD9, and CD81, with respect to sEV derived from the other conditions. The in vitro internalization assays in different target cell types and the pharmacokinetic profile of intraperitoneally administered sEV in vivo indicated that the higher EV production rate did not affect the uptake kinetics or the systemic biodistribution in healthy mice. In conclusion, the OxiumTMEXO medium sustains an efficient and robust production of large quantities of sEV, conserving the classic functional properties of internalization into acceptor target cells and biodistribution in vivo, supplying the amount and quality of EVs for the development of cell-free therapies.


2011 ◽  
Vol 23 (1) ◽  
pp. 167 ◽  
Author(s):  
M. Rubessa ◽  
S. Di Francesco ◽  
M. V. Suárez Novoa ◽  
L. Boccia ◽  
V. Longobardi ◽  
...  

Most systems for producing mammalian embryos in vitro use glucose as an energy source in the media despite putative toxic effects (Schini and Bavister 1988 Biol. Reprod. 39, 1183–1192; Takahashi and First 1992 Theriogenology 37, 963–978). Currently there is a tendency to identify other suitable energy sources in an attempt to replace glucose from culture media. Glyceraldehyde-3-phosphate (G3P), a glucose-derived high-energy compound, is the end product of the energy-consuming phase of glycolysis that enters the pay-off phase of the pathway characterised by a net gain of energy. The aim of this study was to determine whether G3P is a valid energy source for supporting in vitro embryo development in cattle. Abattoir-derived oocytes (n = 832, over 4 replicates) were matured in vitro in TCM-199 with 15% bovine serum (BS), 0.5 μg mL–1 FSH, 5 μg mL–1 LH, 0.8 mM L-glutamine, and 50 mg mL–1 gentamicin. Mature COC were fertilized in Tyrode’s modified medium, with 30 mg mL–1 heparin, 30 mM penicillamine, 15 mM hypotaurine, 0.15 mM epinephrine, and 1% BS. Both IVM and IVF were carried out at 39°C and 5% CO2 in air. After 20 to 22 h of gamete co-incubation, presumptive zygotes were denuded and cultured in SOF containing either 1.5 mM glucose (control group) or G3P at 3 different concentrations (0.125, 0.5, and 1.5 mM). It is worth specifying that in the 3 G3P-supplemented groups small amounts of glucose were left (0.15 mM) because it is known that a complete removal would affect embryo development by interfering with ribose synthesis through the pentose–phosphate pathway. In vitro culture was carried out at 39°C under humidified air with 5% CO2, 7% O2, and 88% N2 in air for 7 days, when the percentages of tight morulae-blastocysts (TMBL) and superior quality blastocysts (BL) were recorded. Differences in embryo yields among groups were analysed by chi-square test. Supplementation of IVC medium with 1.5 mM G3P reduced (P < 0.01) TMBL (5.0%) and BL (5.0%) rates compared with all other groups, indicating a toxic effect. However, when G3P was added at lower concentrations, no differences in TMBL (37.3 and 26.1, respectively, with 0.125 and 0.5 mM G3P) and in BL rates (35.3 and 25.5%, respectively, with 0.125 and 0.5 mM G3P) were observed compared with the control (32.7% TMBL and 31.4% BL, respectively). Within G3P-treated groups, the higher embryo yields were recorded with 0.125 mM compared with 0.5 mM (P < 0.05) and 1.5 mM (P < 0.01). Interestingly, embryos produced with G3P at the lower concentrations (0.125 and 0.5 mM) seemed to show a faster development compared with the control. In conclusion, these results demonstrated that G3P is a valid energy source for bovine preimplantation embryos and, hence, that G3P supplementation of IVC medium may be a suitable option for reducing glucose concentration in the media. However, further studies are needed to investigate lower concentrations of G3P and to better evaluate embryo viability.


2004 ◽  
Vol 16 (2) ◽  
pp. 87 ◽  
Author(s):  
Le Ann Blomberg ◽  
Kurt A. Zuelke

Functional genomics provides a powerful means for delving into the molecular mechanisms involved in pre-implantation development of porcine embryos. High rates of embryonic mortality (30%), following either natural mating or artificial insemination, emphasise the need to improve the efficiency of reproduction in the pig. The poor success rate of live offspring from in vitro-manipulated pig embryos also hampers efforts to generate transgenic animals for biotechnology applications. Previous analysis of differential gene expression has demonstrated stage-specific gene expression for in vivo-derived embryos and altered gene expression for in vitro-derived embryos. However, the methods used to date examine relatively few genes simultaneously and, thus, provide an incomplete glimpse of the physiological role of these genes during embryogenesis. The present review will focus on two aspects of applying functional genomics research strategies for analysing the expression of genes during elongation of pig embryos between gestational day (D) 11 and D12. First, we compare and contrast current methodologies that are being used for gene discovery and expression analysis during pig embryo development. Second, we establish a paradigm for applying serial analysis of gene expression as a functional genomics tool to obtain preliminary information essential for discovering the physiological mechanisms by which distinct embryonic phenotypes are derived.


2017 ◽  
Vol 103 ◽  
pp. 17-23 ◽  
Author(s):  
C.A. Martinez ◽  
A. Nohalez ◽  
J.J. Ceron ◽  
C.P. Rubio ◽  
J. Roca ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
April Nettesheim ◽  
Myoung Sup Shim ◽  
Angela Dixon ◽  
Urmimala Raychaudhuri ◽  
Haiyan Gong ◽  
...  

Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.


2018 ◽  
Vol 19 (11) ◽  
pp. 3538 ◽  
Author(s):  
Brandon Lehrich ◽  
Yaxuan Liang ◽  
Pooya Khosravi ◽  
Howard Federoff ◽  
Massimo Fiandaca

It is known that culture media (CM) promotes cellular growth, adhesion, and protects explanted primary brain cells from in vitro stresses. The fetal bovine serum (FBS) supplement used in most CM, however, contains significant quantities of extracellular vesicles (EVs) that confound quantitative and qualitative analyses from the EVs produced by the cultured cells. We quantitatively tested the ability of common FBS EV-depletion protocols to remove exogenous EVs from FBS-supplemented CM and evaluated the influence such methods have on primary astrocyte culture growth and viability. We assessed two methodologies utilized for FBS EV removal prior to adding to CM: (1) an 18-h ultracentrifugation (UC); and (2) a commercial EV-depleted FBS (Exo-FBS™). Our analysis demonstrated that Exo-FBS™ CM provided the largest depletion (75%) of total FBS EVs, while still providing 6.92 × 109 ± 1.39 × 108 EVs/mL. In addition, both UC and Exo-FBS™ CM resulted in poor primary astrocyte cell growth and viability in culture. The two common FBS EV-depletion methods investigated, therefore, not only contaminate in vitro primary cell-derived EV analyses, but also provide a suboptimal environment for primary astrocyte cell growth and viability. It appears likely that future CM optimization, using a serum-free alternative, might be required to advance analyses of cell-specific EVs isolated in vitro.


Author(s):  
Tammy Estabrooks ◽  
Zhongmin Dong

Somatic embryogenesis is the process by which somatic cells are induced into an embryogenic state, followed by differentiation into embryos. Somatic embryogenesis, in addition to being a method of propagation, can serve as an experimental tool for research into plant embryo development. This is a review of the current literature on in vitro plant somatic embryogenesis and the molecular advances made to identify genes expressed during the various stages of this process. Some factors hindering the elucidation of the molecular mechanisms underlying somatic embryogenesis are discussed.L’embryogenèse somatique est le processus par lequel les cellules somatiques passent à l’état embryogène et se différencient en embryons. En plus de constituer une méthode de propagation, elle peut servir d’outil expérimental de recherche pour développer des embryons de plantes. Le présent document est une revue de la documentation sur l’embryogenèse somatique végétale in vitro et sur les progrès réalisés à l’échelle moléculaire pour identifier les gènes exprimés au cours des divers stades du processus. On examine aussi certains facteurs qui rendent difficile l’élucidation des mécanismes moléculaires de l’embryogenèse somatique.


Sign in / Sign up

Export Citation Format

Share Document