125 EFFECT OF GLYCERALDEHYDE-3-PHOSPHATE DURING BOVINE IN VITRO EMBRYO CULTURE

2011 ◽  
Vol 23 (1) ◽  
pp. 167 ◽  
Author(s):  
M. Rubessa ◽  
S. Di Francesco ◽  
M. V. Suárez Novoa ◽  
L. Boccia ◽  
V. Longobardi ◽  
...  

Most systems for producing mammalian embryos in vitro use glucose as an energy source in the media despite putative toxic effects (Schini and Bavister 1988 Biol. Reprod. 39, 1183–1192; Takahashi and First 1992 Theriogenology 37, 963–978). Currently there is a tendency to identify other suitable energy sources in an attempt to replace glucose from culture media. Glyceraldehyde-3-phosphate (G3P), a glucose-derived high-energy compound, is the end product of the energy-consuming phase of glycolysis that enters the pay-off phase of the pathway characterised by a net gain of energy. The aim of this study was to determine whether G3P is a valid energy source for supporting in vitro embryo development in cattle. Abattoir-derived oocytes (n = 832, over 4 replicates) were matured in vitro in TCM-199 with 15% bovine serum (BS), 0.5 μg mL–1 FSH, 5 μg mL–1 LH, 0.8 mM L-glutamine, and 50 mg mL–1 gentamicin. Mature COC were fertilized in Tyrode’s modified medium, with 30 mg mL–1 heparin, 30 mM penicillamine, 15 mM hypotaurine, 0.15 mM epinephrine, and 1% BS. Both IVM and IVF were carried out at 39°C and 5% CO2 in air. After 20 to 22 h of gamete co-incubation, presumptive zygotes were denuded and cultured in SOF containing either 1.5 mM glucose (control group) or G3P at 3 different concentrations (0.125, 0.5, and 1.5 mM). It is worth specifying that in the 3 G3P-supplemented groups small amounts of glucose were left (0.15 mM) because it is known that a complete removal would affect embryo development by interfering with ribose synthesis through the pentose–phosphate pathway. In vitro culture was carried out at 39°C under humidified air with 5% CO2, 7% O2, and 88% N2 in air for 7 days, when the percentages of tight morulae-blastocysts (TMBL) and superior quality blastocysts (BL) were recorded. Differences in embryo yields among groups were analysed by chi-square test. Supplementation of IVC medium with 1.5 mM G3P reduced (P < 0.01) TMBL (5.0%) and BL (5.0%) rates compared with all other groups, indicating a toxic effect. However, when G3P was added at lower concentrations, no differences in TMBL (37.3 and 26.1, respectively, with 0.125 and 0.5 mM G3P) and in BL rates (35.3 and 25.5%, respectively, with 0.125 and 0.5 mM G3P) were observed compared with the control (32.7% TMBL and 31.4% BL, respectively). Within G3P-treated groups, the higher embryo yields were recorded with 0.125 mM compared with 0.5 mM (P < 0.05) and 1.5 mM (P < 0.01). Interestingly, embryos produced with G3P at the lower concentrations (0.125 and 0.5 mM) seemed to show a faster development compared with the control. In conclusion, these results demonstrated that G3P is a valid energy source for bovine preimplantation embryos and, hence, that G3P supplementation of IVC medium may be a suitable option for reducing glucose concentration in the media. However, further studies are needed to investigate lower concentrations of G3P and to better evaluate embryo viability.

2010 ◽  
Vol 22 (1) ◽  
pp. 323 ◽  
Author(s):  
M. G. Catalá ◽  
D. Izquierdo ◽  
R. Romaguera ◽  
M. Roura ◽  
M. T. Paramio

The aim of this study was to assess the effect of an in vitro growth medium (De Wu et al. 2006 Biol. Rep. 75, 547-554) in prepubertal ewe oocytes selected by the brilliant cresyl blue (BCB) test. Prepubertal ewe oocytes were recovered by slicing ovaries of slaughtered animals and immediately exposed during 1 h to 13 μM BCB and classified according to their cytoplasm coloration (Rodriguez-Gonzalez E et al. 2002 Theri- ogenology 57(5), 1397-1409): BCB+ (blue cytoplasm, hypothetically grown oocytes) and BCB- (uncolored cytoplasm, hypothetically growing oocytes). Uncolored oocytes (BCB-) were matured using three culture media: growth medium (GM: TCM-199, 0.04 μg mL-1 FSH, 0.04 μg mL-1 LH, 0.004 μg mL-1 estradiol, 100 μg mL-1 ascorbic acid, and 5 μL mL-1 ITS: insulin transferrin selenium), conventional maturation medium (CM: TCM-199, 10 μg mL-1 FSH, 10 μg mL-1 LH and 1 μg mL-1 estradiol) and modified maturation medium (MM: CM with the addition of 100 μg mL-1 ascorbic acid and 5 μL mL-1 ITS). Oocytes were matured in GM for 12 h and then separated into 2 groups, CM (GM+CM) and MM (GM+MM) for another 12 h of maturation. Two extra groups of BCB- oocytes were directly cultured for 24 h in CM or MM media (BCB-/CM and BCB-/MM). Colored oocytes (BCB+) and a control group (oocytes not exposed to BCB) were matured for 24 h in CM. All groups were cultured at 38.5°C and 5% CO2 in humidified atmosphere. Fertilization took place in SOF medium supplemented with 10% of estrous sheep serum during 20 h with a sperm concentration of 1 × 106 spermatozoa/mL. Presumptive zygotes were cultured for 8 days in SOF with 10% FCS at 38.5°C, 5% CO2 and 5% O2. Results are shown in Table 1. The percentage of morula plus blastocyst obtained from BCB - oocytes was significantly increased in oocytes exposed to growth medium (containing ITS, ascorbic acid and low hormone concentrations; groups GM+CM and GM+MM) for the first 12 h. An increasing tendency has also been observed in blastocyst yield in these two groups. Regarding maturation rate, no differences were found in all groups (data not shown). In conclusion, as De Wu et al. (2006) showed in prepubertal gilts, we also achieved some improvements in embryo development of growing oocytes when the first 12 h of maturation took place in a growth medium. However, embryo developmental potential of BCB- oocytes is still lower compared with that of BCB+ oocytes. Table 1.Effect of GM on embryo development of BCB- oocytes Grant sponsor Spanish Ministry of Science and Innovation.Code: AGL2007-60227-CO2-01


2017 ◽  
Vol 29 (1) ◽  
pp. 66 ◽  
Author(s):  
Krishna C. Pavani ◽  
Carmen Alminana ◽  
Eline Wydooghe ◽  
Maaike Catteeuw ◽  
Miguel A. Ramírez ◽  
...  

In vitro, efficient communication between mammalian embryos in groups or between embryos and cocultured somatic cells implies that there is a sender, a message and a receiver that is able to decode the message. Embryos secrete a variety of autocrine and paracrine factors and, of these, extracellular vesicles have recently been implicated as putative messengers in embryo–embryo communication, as well as in communication of the embryo with the maternal tract. Extracellular vesicles (EVs) are membrane-bound vesicles that are found in biofluids and in culture media conditioned by the presence of embryos or cells. EVs carry and transfer regulatory molecules, such as microRNAs, mRNAs, lipids and proteins. We conducted a systematic search of the literature to review and present the currently available evidence regarding the possible roles of EVs in in vitro embryo communication and embryo development. It is important to note that there is limited information available on the molecular mechanisms and many of the biologically plausible functions of EVs in embryo communication have not yet been substantiated by conclusive experimental evidence. However, indirect evidence, such as the use of media conditioned by embryos or by somatic cells with improved embryo development as a result, may indicate that EVs can be an important asset for the development of tailor-made media, allowing better embryo development in vitro, even for single embryo culture.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ricardo Josué Acuña-González ◽  
Mercedes Olvera-Valencia ◽  
Jorge Skiold López-Canales ◽  
Jair Lozano-Cuenca ◽  
Mauricio Osorio-Caballero ◽  
...  

Abstract Background Morphological features are the most common criteria used to select human embryos for transfer to a receptive uterine cavity. However, such characteristics are not valid for embryos in cellular arrest. Even aneuploid embryos can have normal morphology, and some euploid embryos have aberrant morphology. The aim of this study was to quantify the expression profile of hsa-miR-21-3p, -24-1-5p, -191-5p, and -372-5p in culture media on day 5 of in vitro embryo development, and compare the profiles of two groups of media classified by outcome: successful (n = 25) or unsuccessful (n = 25) implantation pregnancy. Methods Fifty patients were accepted in the Department of Reproductive Biology of a Hospital in México City, based on the Institutional inclusion criteria for in vitro fertilization. Embryos were transferred to the women on day 5 of cultivation, and the culture media were collected. RNA was isolated from each culture medium with TRIzol reagent, and microRNA (miRNA) expression was detected through RT-PCR with specific primers. Expression bands were quantified by reading optical density. Results There was a 5.2-fold greater expression of hsa-miR-191-5p in the pregnancy-related culture media (p ≤ 0.001) and a 1.6-fold greater level of hsa-miR-24-1-5p (p = 0.043) in the media corresponding to non-pregnant women. No significant difference existed between the two groups hsa-miR-21-3p (p = 0.38) or hsa-miR-372-5p (p = 0.41). Conclusions Regarding adequate in vitro embryo development, hsa-miR-191-5p could possibly represent a positive biomarker, while has-miR-24-1-5p may indicate poor prognosis. This former miRNA modulates IGF2BP-1 and IGF2R, associated with the implantation window. On the other hand, hsa-miR-24-1-5p may be related to a poor prognosis of human embryo development.


2024 ◽  
Vol 84 ◽  
Author(s):  
A. Azam ◽  
R. Ejaz ◽  
S. Qadeer ◽  
S. Irum ◽  
A. Ul-Husna ◽  
...  

Abstract The objective of the current study was to investigate the synergistic impact of α-Tocopherol and α-Linolenic acid (100 µM) on IVM and IVC of Nili Ravi buffalo oocytes. Oocytes were obtained from the ovaries of slaughtered buffaloes within two hours after slaughter and brought to laboratory. Buffalo cumulus oocyte complexes were placed randomly in the five experimental groups included; GROUP 1: Maturation media (MM) + 100 µM ALA (control), GROUP 2: MM + 100 µM ALA + 50μM α-Tocopherol, GROUP 3: MM + 100 µM ALA + 100μM α-Tocopherol, GROUP 4: MM + 100 µM ALA + 200 μM α-Tocopherol and GROUP 5: MM + 100 µM ALA + 300 μM α-Tocopherol under an atmosphere of 5% CO2 in air at 38.5 °C for 22-24 h. Cumulus expansion and nuclear maturation status was determined (Experiment 1). In experiment 2, oocytes were matured as in experiment 1. The matured oocytes were then fertilized in Tyrode’s Albumin Lactate Pyruvate (TALP) medium for about 20 h and cultured in synthetic oviductal fluid (SOF) medium to determine effect of α-Linolenic acid (100 µM) and α-Tocopherol in IVM medium on IVC of presumptive zygotes. To study the effect of α-Linolenic acid (100 µM) in IVM media and increasing concentration of α-tocopherol in the culture media on early embryo development (Experiment 3), the presumptive zygotes were randomly distributed into the five experimental groups with increasing concentration of α-tocopherol in culture media. Higher percentage of MII stage oocytes in experiment 1(65.2±2.0), embryos at morula stage in experiment 2 (30.4±1.5) and experiment 3 (22.2±2.0) were obtained. However, overall results for cumulus cell expansion, maturation of oocyte to MII stage and subsequent embryo development among treatments remain statistically similar (P > 0.05). Supplementation of α-tocopherol in maturation media having α-Linolenic acid and/or in embryo culture media did not further enhance in vitro maturation of oocyte or embryo production.


2012 ◽  
Vol 24 (1) ◽  
pp. 159
Author(s):  
J. Pradiee ◽  
L. L. Viana ◽  
E. C. S. Santos ◽  
A. Gonçalves ◽  
R. G. Mondadori ◽  
...  

During in vitro production (IVP), embryos are sensitive to suffering negative effects from catabolites, such as reactive oxygen species (ROS). Under physiological conditions, the action of the ROS is blocked by antioxidants such as glutathione, but glutathione's concentration is reduced during the main steps of the IVP process. The objective of the present study is to evaluate the effect of the supplementation of the media for in vitro maturation (IVM) and in vitro culture (IVC) with β-mercaptoethanol and cysteine on the rates of embryo development and viability after vitrification in open pulled straws (OPS). Ten IVP routines were conducted for IVP, using ovaries form pubertal sheep collected in a slaughterhouse. The ovaries were kept in a saline/antibiotic solution at 30°C during transport to the laboratory. The cumulus oophurus–oocytes complexes (COC) selected for IVM were allocated to 2 treatments: T1 (control), including no antioxidants in the IVM and IVC media (n = 676); and T2, including 50 μM β-mercaptoethanol and 600 μM cysteine, in the IVM and IVC media (n = 729). The IVM was conducted using the TCM 199 medium including oestradiol, FSH, LH, pyruvate, heat inactivated sheep serum and antibiotics, for 22 to 24 h. Sperm selection was conducted by swim-up in medium with tris-glucose-citric acid with fresh semen. For IVF, conducted for 18 to 22 h, 1 × 106 spermatozoa per mL were used in SOF medium including 2% heat-inactivated sheep serum. Both IVM and IVF were conducted with incubation with 5% CO2 at 39°C with saturated humidity. After IVF, the probable zygotes were denuded and cultured for 8 days in SOF medium with 0.4% BSA, at 39°C, in bags with 3 gases (5% CO2, 90% N2 and 5% O2). The criteria considered for embryo viability were: cleavage rate at Day 2 (cleaved/inseminated), embryo development at Day 7 (blastocysts/cleaved) and the reexpansion rate 24 h post-vitrification. Such frequencies were compared between treatments by the chi-squared test. The cleavage rate did not differ (P > 0.05) for T1 (60.3%) and T2 (64.3%). The rate of embryro development at Day 7 was also similar (P > 0.05) for T1 (33.6%) and T2 (36.6%). The reexpansion rate for T1 (76.9%) and T2 (54.1%) were also similar (P > 0.05). Thus, supplementation of IVM and IVC media with β-mercaptoethanol and cysteine presented no effect in the development and viability of vitrified sheep embryos. CAPES, MARFRIG Group.


2008 ◽  
Vol 20 (1) ◽  
pp. 9 ◽  
Author(s):  
David K. Gardner

Improvements in culture media formulations have led to an increase in the ability to maintain the mammalian embryo in culture throughout the preimplantation and pre-attachment period. Amino acids and specific macromolecules have been identified as being key medium components, whereas temporal dynamics have been recognised as important media characteristics. Furthermore, other laboratory factors that directly impact embryo development and viability have been identified. Such factors include the use of a reduced oxygen tension, an appropriate incubation system and an adequate prescreening of all contact supplies. With rigourous quality systems in place, it is possible to obtain in vivo rates of embryo development in vitro using new media formulations while maintaining high levels of embryo viability. The future of embryo culture will likely be based on novel culture chips capable of providing temporal dynamics while facilitating real-time analysis of embryo physiology.


2019 ◽  
Vol 31 (3) ◽  
pp. 443
Author(s):  
Fiona D' Souza ◽  
Gitanjali Asampille ◽  
Shubhashree Uppangala ◽  
Guruprasad Kalthur ◽  
Hanudatta S. Atreya ◽  
...  

Paternal genetic alterations may affect embryo viability and reproductive outcomes. Currently it is unknown whether embryo metabolism is affected by sperm-mediated abnormalities. Hence, using a mouse model, this study investigated the response to paternally transmitted DNA lesions on genetic integrity and metabolism in preimplantation embryos. Spent embryo culture media were analysed for metabolites by nuclear magnetic resonance spectroscopy and embryonic genetic integrity was determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling (TUNEL) assay on embryonic Day 4.5 (E4.5). Metabolic signatures were compared between normally derived embryos (control) and embryos derived from spermatozoa carrying induced DNA lesions (SDL). SDL embryos showed a significant reduction in blastocyst formation on E3.5 and E4.5 (P&lt;0.0001) and had an approximately 2-fold increase in TUNEL-positive cells (P&lt;0.01). A cohort of SDL embryos showing delayed development on E4.5 had increased uptake of pyruvate (P&lt;0.05) and released significantly less alanine (P&lt;0.05) to the medium compared with the corresponding control embryos. On the other hand, normally developed SDL embryos had a reduced (P&lt;0.001) pyruvate-to-alanine ratio compared with normally developed embryos from the control group. Hence, the difference in the metabolic behaviour of SDL embryos may be attributed to paternally transmitted DNA lesions in SDL embryos.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 932
Author(s):  
Arkadiusz Matuszewski ◽  
Monika Łukasiewicz ◽  
Jan Niemiec ◽  
Maciej Kamaszewski ◽  
Sławomir Jaworski ◽  
...  

The use of intensive selection procedure in modern broiler chicken lines has led to the development of several skeletal disorders in broiler chickens. Therefore, current research is focused on methods to improve the bone quality in birds. In ovo technology, using nanoparticles with a high specificity to bones, is a potential approach. The present study aimed to evaluate the effect of in ovo inoculation (IOI) of calcium carbonate nanoparticles (CCN) on chicken embryo development, health status, bone characteristics, and on broiler production results and bone quality. After assessing in vitro cell viability, the IOI procedure was performed with an injection of 500 μg/mL CCN. The control group was not inoculated with CCN. Hatchability, weight, and selected bone and serum parameters were measured in embryos. Part of hatchlings were reared under standard conditions until 42 days, and production results, meat quality, and bone quality of broilers were determined. CCN did not show cytotoxicity to cells and chicken embryo and positively influenced bone parameters of the embryos and of broilers later (calcification) without negatively affecting the production results. Thus, the IOI of CCN could modify the molecular responses at the stage of embryogenesis, resulting in better mineralization, and could provide a sustained effect, thereby improving bone quality in adult birds.


2021 ◽  
Vol 22 (3) ◽  
pp. 1222
Author(s):  
Cristina Cuello ◽  
Cristina A. Martinez ◽  
Josep M. Cambra ◽  
Inmaculada Parrilla ◽  
Heriberto Rodriguez-Martinez ◽  
...  

This study was designed to investigate the impact of vitrification on the transcriptome profile of blastocysts using a porcine (Sus scrofa) model and a microarray approach. Blastocysts were collected from weaned sows (n = 13). A total of 60 blastocysts were vitrified (treatment group). After warming, vitrified embryos were cultured in vitro for 24 h. Non-vitrified blastocysts (n = 40) were used as controls. After the in vitro culture period, the embryo viability was morphologically assessed. A total of 30 viable embryos per group (three pools of 10 from 4 different donors each) were subjected to gene expression analysis. A fold change cut-off of ±1.5 and a restrictive threshold at p-value < 0.05 were used to distinguish differentially expressed genes (DEGs). The survival rates of vitrified/warmed blastocysts were similar to those of the control (nearly 100%, n.s.). A total of 205 (112 upregulated and 93 downregulated) were identified in the vitrified blastocysts compared to the control group. The vitrification/warming impact was moderate, and it was mainly related to the pathways of cell cycle, cellular senescence, gap junction, and signaling for TFGβ, p53, Fox, and MAPK. In conclusion, vitrification modified the transcriptome of in vivo-derived porcine blastocysts, resulting in minor gene expression changes.


2017 ◽  
Vol 103 ◽  
pp. 17-23 ◽  
Author(s):  
C.A. Martinez ◽  
A. Nohalez ◽  
J.J. Ceron ◽  
C.P. Rubio ◽  
J. Roca ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document