203 SINGLE-STEP GENE EDITING OF 3 XENOANTIGENS IN PORCINE FIBROBLASTS USING PROGRAMMABLE NUCLEASES

2017 ◽  
Vol 29 (1) ◽  
pp. 210 ◽  
Author(s):  
A. Perota ◽  
I. Lagutina ◽  
C. Quadalti ◽  
R. Duchi ◽  
P. Turini ◽  
...  

Programmable nucleases (ZFN, Tal Effector Nucleases, and CRISPR) opened a new era for mammal genome editing, in particular for the pigs used for xenotransplantation. Multiple gene editing events are required both for knockout (KO) of xenoantigens and for targeted integration of human protective genes (Perota et al. 2016 J. Genet. Genomics 43, 233–23). The objective of the present work was to edit selected pig lines to KO the enzymes coding for the most relevant xenoantigens (i.e. GGTA1, CMAH, and B4GalNT2), combining Talens and CRISPR/Cas9 technologies to magnetic beads selection (Li et al. 2013 Xenotransplantation 22, 20–31). Primary porcine adult fibroblasts were transfected using Nucleofector (V-024 program). In a single reaction 2 × 106 fibroblasts were co-transfected using 2 different sets of TALENS (4 μg/set) specific for CMAH (Conchon et al., 2013) and GGTA1 (Perota et al., 2015) genes together with B4GalNT2-specific CRISPR/Cas9 expression vector (2 μg; pX330-B4GalNT2; Estrada et al., 2015). Eight days post-transfection (DPT), Gal–/– cells were selected initially using biotin-conjugated IB4 lectin (Sigma, St. Louis, MO, USA) and magnetic beads (Dynabeads M-280, Thermo Fisher Scientific, Waltham, MA, USA). The selected cells were then plated on 150-mm Petri dishes (200 cells/dish) and cultured for 10 days. Selected colonies were expanded for PCR analysis and cryopreserved for somatic cell nuclear transfer (SCNT). All colonies were analysed by PCR for CMAH gene and their resulting products were digested with HindIII (HindIII-RFLP). Colonies that lost wild-type HindIII as a consequence of Talens effected deletion were PCR characterised for GGTA1, selecting those that had detectable Indels after gel electrophoresis and finally analysed by PCR for B4GalNT2. All PCR products were validated by sequencing for all the 3 genes of interest (TopoTA, Thermo Fisher Scientific). Selected colonies were used as nuclear donors for SCNT (Lagutina et al., 2006). Eight DPT we obtained 3.45 ×106 cells. About 6.0 × 103 Gal-negative cells (0.17%) were collected from the supernatant after magnetic beads separation. Eighteen DPT, 120 colonies were picked up and their HindIII-RFLP analyses on CMAH gene revealed that 22 colonies (18.3%) were KO for both CMAH alleles. Of these 22 colonies following electrophoretic analyses of GGTA1-PCR products, 13 colonies had detectable Indels. These 13 colonies were finally PCR analysed and sequenced for B4GalNT2 and sequenced. Final sequencing results confirmed that 2 colonies (1.6%) resulted in KO for the 3 genes. Three different zona-free SCNT experiments were done and 579 reconstructed embryos were obtained. On Day 7, 322 morulae or blastocysts (56%) were transferred in 3 synchronised sows and 2 (66%) became pregnant. In conclusion, after gene editing with programmable nucleases, combining beads-mediated selection with well-designed molecular analyses, we developed a multistep assay that can be used efficiently to detect desired gene edited events in cell colonies suitable for the SCNT. Embryos generated after SCNT were able to establish pregnancies at a high rate. This work is supported by European FP7 grants Translink (n° 603049) and Xenoislet (n° 601827).

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4664-4664
Author(s):  
Cora Husemann ◽  
Karsten Kleo ◽  
Timothy Looney ◽  
Chris Allen ◽  
Bernhard Josef Woermann ◽  
...  

Introduction All mature T-cell-based lymphoid malignancies harbor identical (clonal) rearrangements of their T cell receptor (TCR) genes (van Dongen et al. Clinica Chimica Acta. 1991, 198, 1-92). The clonality assessment of the rearranged TCR gene is particularly important for the identification, characterization and monitoring of T-cell neoplasms since histology and immunophenotyping alone is not enough to make conclusive diagnosis in all cases. Diagnostic clonality testing is currently based on the parallel analysis of the rearranged TCR-gamma and TCR-beta chain genes. This is done using a multiplex PCR developed within the European BIOMED-2/EuroClonality consortium (van Dongen et al. Leukemia. 2003, 17, 2257-2317) followed by capillary electrophoresis of the resultant PCR products. Although, this method is considered the "gold standard", which is established worldwide in many molecular diagnostic laboratories, the resolution of this approach is limited, especially in cases with low percentage of clonally rearranged TCRs and a high mixture of non-clonally rearranged T-cells. Next generation sequencing (NGS) is a powerful tool to provide resolution at single gene level. This also holds true for NGS assays, which are able to detect all unique TCR rearrangements in a given sample with very high resolution and sensitivity. This approach can be employed for precise assessment of the immune repertoire, minimal residue disease and T-cell clonality. Detailed insights into the clonotypes provides a great potential for early diagnosis of T-cell neoplasms, and the identification of individual clones is essential for monitoring of the disease. Methods We investigated 19 formalin-fixed paraffin-embedded (FFPE) tissue samples from celiac disease patients (n = 14) and routine diagnostic cases suspicious of lymphoma (n = 5). After DNA extraction, we performed multiplex PCRs using the BIOMED-2 TCR-beta primer sets (van Dongen et al. Leukemia. 2003, 17, 2257-2317) followed by capillary electrophoresis. For TCR-beta NGS, the Oncomine™ TCR Beta-SR DNA Assay (Thermo Fisher Scientific) was used according to the manufacturer's instructions and sequencing was performed on the IonTorrent S5. Identification of individual clonotypes and bioinformatics analysis of the data was done with the help of the IonReporter software (Thermofisher Scientific). It is worth noting that the 14 celiac disease samples were previously analysed by a different TCR-beta NGS approach (Ritter et al. Gut. 2018, 67, 644-653) and utilized for the comparison of the NGS-data. Results 17 out of 19 cases analysed by TCR-beta multiplex PCR (BioMed-2) followed by capillary electrophoresis and by the Oncomine™ TCR Beta-SR assay displayed a very similar length distribution of the PCR products. This holds true for samples with a clonal appearance and for samples with an oligo-/polyclonal pattern. In two discrepant cases, the Primerset B of the BioMed-2 approach showed a dominant amplification product, which was not as clear by TCR-beta NGS in which both cases displayed an oligoclonal TCR-beta gene rearrangement pattern with a few dominant T-cell populations. Both samples were from celiac disease patients, which mainly present a pronounced oligoclonal TCR-beta gene rearrangement pattern. Strikingly, the NGS data from the Oncomine™ TCR Beta-SR DNA Assay delivered highly comparable results when compared to the sequencing data of Ritter et al. 2018 despite having completely different primer sets and a different NGS platform. Conclusion Our comparison of the conventional multiplex PCR (BioMed-2) and TCR-beta NGS (Oncomine™ TCR Beta-SR DNA Assay) demonstrated a very high concordance (17/19 cases) of the molecular data. The two discordant cases can be explained by an over-interpretation of dominant species BioMed-2 Primerset B amplifications, which often show up in cases with low T-cell content or oligoclonal T-cell counts. These T-cell clonotypes are detectable by TCR-beta NGS only at a low percentage because of combination of all type of rearrangements in one assay. The robustness and reliability of NGS-based TCR-beta clonality testing was demonstrated by comparison of two completely different assays, leading to very similar results for all celiac disease patients. We are thus very confident that NGS-based clonality testing will be the "gold standard" of the future. Disclosures Looney: Thermo Fisher Scientific: Employment. Allen:Thermo Fisher Scientific: Employment.


2000 ◽  
Vol 68 (3) ◽  
pp. 1714-1718 ◽  
Author(s):  
Radha Iyer ◽  
John M. Hardham ◽  
Gary P. Wormser ◽  
Ira Schwartz ◽  
Steven J. Norris

ABSTRACT The vls (variable major protein [VMP]-like sequence) locus of Borrelia burgdorferi encodes an antigenic variation system that closely resembles the VMP system of relapsing fever borreliae. To determine whether vls sequences are present consistently in low-passage, infectious isolates of B. burgdorferi, 22 blood and erythema migrans biopsy isolates from Lyme disease patients in Westchester County, New York, were examined by Southern blot and PCR analysis. Each of the strains contained a single plasmid varying in size from 21 to 38 kb that hybridized strongly with a vlsE probe based on the B. burgdorferi B31 sequence. In contrast, PCR products were obtained with only 10 of the 22 strains when primers corresponding to the 5′ and 3′ regions of the B31 vlsE sequence outside the variable cassette region were used. Only 2 of 16 B. burgdorferi-infected tick specimens yielded detectable PCR product. Eight of 10 strains that yielded a PCR product under these conditions were type 1 (a genotype with a high rate of dissemination), according to PCR-restriction fragment length polymorphism analysis of intergenic rDNA sequences, whereas the isolates that did not yield vlsE PCR products were either type 2 or type 3. Comparison of the sequences of cloned PCR products from the patient isolates indicated a high degree of identity to the B31 sequence, with most of the differences restricted to the hypervariable regions known to undergo sequence variation. Taken together, these results both reinforce previous evidence thatvls sequences are present consistently in low-passage Lyme disease spirochetes and indicate that both highly conserved and heterogeneous subgroups exist with regard to vlsEsequences.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 206.1-207
Author(s):  
C. Grönwall ◽  
L. Liljefors ◽  
H. Bang ◽  
A. Hensvold ◽  
M. Hansson ◽  
...  

Background:Seropositive rheumatoid arthritis (RA) is characterized by the presence of rheumatoid factor (RF) and anti-citrullinated protein autoantibodies (ACPA) with different fine-specificities. Yet, other serum anti-modified protein autoantibodies (AMPA), e.g. anti-carbamylated (Carb), anti-acetylated (KAc), and anti-malondialdehyde acetaldehyde (MAA) modified protein antibodies, have been described. By using RA patient single-cell derived monoclonal antibodies we have previously shown that individual ACPA clones recognize small distinct citrulline-containing epitopes giving them extensive multireactivity when these epitopes are found in many peptides and proteins. Moreover, certain CCP2+ multireactive ACPA clones bind also to cabamylated and acetylated autoantigens [1].Objectives:To provide a comprehensive evaluation of serum IgG and IgA autoreactivity to different post-translational modifications in RA.Methods:We analyzed 30 different IgG and IgA AMPA reactivities to modified antigens by ELISA and autoantigen arrays, in N=1985 newly diagnosed RA patients and population controls. The study utilized both previously established (i.e IgG and IgA CCP2; IgG ACPA fine-specificities; IgG anti-Carb fibrinogen and Carb FCS; IgG and IgA Cit/Carb/KAc/Orn(Ac)-vimentin), and novel assays (e.g. IgG anti-MAA and IgG anti-acetylated histones). Association with patient characteristics such as smoking and disease activity were explored. The newly developed assays were also evaluated in SLE disease controls and CCP2+ RA-risk individuals without arthritis.Results:Carb and KAc reactivities by different assays were primarily seen in patients also positive for citrulline-reactivity. Modified vimentin (mod-Vim) peptides were used for direct comparison of different AMPA reactivities, revealing that IgA AMPA recognizing mod-Vim was mainly detected in subsets of patients with high IgG anti-Cit-Vim levels and a history of smoking. IgG acetylation reactivity was mainly detected in a subset of patients with Cit and Carb reactivity. Anti-acetylated histone 2B reactivity was RA-specific and associated with high anti-CCP2 IgG levels, multiple ACPA fine-specificities, and smoking. This reactivity was also found to be present in CCP2+ RA-risk individuals without arthritis. Our data further demonstrate that IgG autoreactivity to MAA was increased in RA compared to controls with highest levels in CCP2+ RA, but was not RA-specific, and showed low correlation with other AMPA. Anti-MAA was instead associated with disease activity and was not significantly increased in CCP2+ individuals at risk of RA. Notably, RA patients could be subdivided into four different subsets based on their AMPA IgG and IgA reactivity profiles.Conclusion:We conclude that autoantibodies exhibiting different patterns of ACPA fine-specificities as well as Carb and KAc reactivity are present in RA and may be derived from multireactive B-cell clones. Anti-Carb and anti-KAc could be considered reactivities within the “Cit-umbrella” similar to ACPA fine-specificities, while MAA is distinctly different.References:[1]Sahlström P, Hansson M, Steen J, Amara K, Titcombe PJ, Forsström B, Stålesen R, Israelsson L, Piccoli L, Lundberg K, Klareskog L, Mueller DL, Catrina AI, Skriner K, Malmström V, Grönwall C. Different Hierarchies of Anti-Modified Protein Autoantibody Reactivities in Rheumatoid Arthritis. Arthritis Rheumatol. 2020 Oct;72(10):1643-1657. PMID: 32501655Caroline Grönwall: None declared, Lisa Liljefors: None declared, Holger Bang Employee of: Employee at ORGENTEC Diagnostika GmbH, Aase Hensvold: None declared, Monika Hansson: None declared, Linda Mathsson-Alm Employee of: Employee at Thermo Fisher Scientific, Lena Israelsson: None declared, Anna Svärd: None declared, Cyril CLAVEL: None declared, Elisabet Svenungsson: None declared, Iva Gunnarsson: None declared, Guy Serre: None declared, Saedis Saevarsdottir: None declared, Alf Kastbom: None declared, Lars Alfredsson: None declared, Vivianne Malmström: None declared, Johan Rönnelid: None declared, Anca Catrina: None declared, Karin Lundberg: None declared, Lars Klareskog: None declared


2010 ◽  
Vol 25 (2) ◽  
pp. 118-122
Author(s):  
K. Barrial ◽  
T. Le Bricon ◽  
F. Courtier ◽  
M.-H. Tourvieille ◽  
S. Hilaire ◽  
...  

2017 ◽  
Vol 7 (10) ◽  
pp. 3533-3542 ◽  
Author(s):  
Micol Falabella ◽  
Linqing Sun ◽  
Justin Barr ◽  
Andressa Z. Pena ◽  
Erin E. Kershaw ◽  
...  
Keyword(s):  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1881-1881
Author(s):  
Geoffrey Lowman ◽  
Landon Pastushok ◽  
Karen Mochoruk ◽  
Wayne Hill ◽  
Michelle Toro ◽  
...  

Abstract Introduction B cell repertoire analysis by next-generation sequencing (NGS) is at the forefront of leukemia and lymphoma research. Some advantages provided by NGS-based techniques include a lower limit-of-detection and simpler paths to standardization compared to other methods. Importantly, in research of post-germinal B cell disorders, such as multiple myeloma (MM), NGS methods allow for the study of clonal lineage based on somatic hypermuation patterns. Current targeted NGS assays require multiple libraries to survey each B cell receptor chain (IGH, IgK, IgL), and this fact is highlighted when initial clonality detection fails due to mutations under primer binding sites. This issue can be especially true in MM which has a high rate of SHM. To address these issues, we have developed an assay for B cell analysis, based on Ion AmpliSeq™ technology, which enables efficient detection of IGH, IgK, and IgL chain rearrangements in a single reaction. Methods The B cell pan-clonality panel (Oncomine™ BCR Pan-Clonality Assay) targets the framework 3 (FR3) portion of the variable gene and the joining gene region of heavy- and light-chain loci (IGH, IgK, IgL) for all alleles found within the IMGT database, enabling readout of the complementary-determining region 3 (CDR3) sequence of each immunoglobulin chain. To maximize sensitivity, we included primers to amplify IgK loci rearrangements involving Kappa deletion element and the constant region intron. To evaluate assay performance, we conducted reproducibility studies and clonality assessment using gDNA from a total of 45 MM research samples. All MM cases examined in this work were confirmed clonal previously by light chain restriction via flow cytometry or IHC/ISH in tissue sections - 16 of the 45 MM samples were identified as lambda light chain restricted. For comparison, a small cohort of 12 B-ALL samples were also included in the study. Sequencing and repertoire analyses were performed using the Ion GeneStudio S5 System and Ion Reporter 5.16 analysis software. Results Clonality assessment of MM clinical research samples show an 93% overall positive detection rate by an assay which combines the IGH, IgK, and IgL chains in a single reaction using published guidelines for clonality assignment. Thirty-four of 45 samples show positive detection of an IGH rearrangement, while 41 of 45 showed positive detection of at least one light chain receptor. In total, 42 of 45 samples were deemed clonal by the single tube assay based on detection for one or more receptor. Clonality results for this sample set are well correlated with orthogonal data from flow, IHC/ISH, or alternate NGS assays. A clonal lambda light chain was identified in 14 of 16 samples determined to be lambda restricted by flow cytometry. In two of the lambda restricted samples only a clonal lambda rearrangement was identified, showing the benefit of including primers targeting both the kappa and lambda light chains in a pan-clonality NGS assay. Both the MM and B-ALL cohorts were evaluated for biased IGHV gene usage. IGHV3-11 was observed in 5 of 45 MM and 5 of 12 B-ALL samples. IGHV4-34, typically linked to autoreactive antibodies and underrepresented in germinal center and memory B-cells, was nonetheless found in 5 of 45 MM samples surveyed. Estimates of somatic hypermutation rates were calculated using the BCR pan-clonality assay. Most MM samples, as expected, contained some somatic hypermutation with 6 of 45 samples showing greater than 10% mutation rates. Automated lineage analysis, based on somatic hypermuation signatures within each sample, identified 8 of 45 MM samples which contained 5 or more clones in the primary clonal lineage, with one case containing a lineage with 23 clones. Two MM samples showed no somatic hypermutation as measured using the FR3 primers contained in the BCR pan-clonality assay. These samples were also evaluated using an FR1-J targeted NGS assay, which confirmed relatively low mutation rates for these MM samples at 0.44% and 1.3%, respectively. Conclusions These results demonstrate the utility of a novel assay for combined repertoire analysis of B cell receptor heavy and light chains in a single library preparation reaction. We expect this assay to simplify laboratory workflows and including analysis tools such as automated somatic hypermutation rate calculation and clonal lineage identification may open new paths for research in lymphoid cell disorders. For research use only. Disclosures Lowman: Thermo Fisher Scientific: Current Employment. Toro: Thermo Fisher Scientific: Current Employment. Pickle: Thermo Fisher Scientific: Current Employment. Ostresh: Thermo Fisher Scientific: Current Employment. Sarda: Thermo Fisher Scientific: Current Employment. Yang: Thermo Fisher Scientific: Current Employment.


2020 ◽  
Vol 21 (5) ◽  
pp. 1840 ◽  
Author(s):  
Cristina A. Martinez ◽  
Manuel Alvarez-Rodriguez ◽  
Dominic Wright ◽  
Heriberto Rodriguez-Martinez

Spermatozoa need to conduct a series of biochemical changes termed capacitation in order to fertilize. In vivo, capacitation is sequentially achieved during sperm transport and interaction with the female genital tract, by mechanisms yet undisclosed in detail. However, when boar spermatozoa are stored in the tubal reservoir pre-ovulation, most appear to be in a non-capacitated state. This study aimed at deciphering the transcriptomics of capacitation-related genes in the pig pre-ovulatory oviduct, following the entry of semen or of sperm-free seminal plasma (SP). Ex-vivo samples of the utero-tubal junction (UTJ) and isthmus were examined with a microarray chip (GeneChip® Porcine Gene 1.0 ST Array, Thermo Fisher Scientific) followed by bioinformatics for enriched analysis of functional categories (GO terms) and restrictive statistics. The results confirmed that entry of semen or of relative amounts of sperm-free SP modifies gene expression of these segments, pre-ovulation. It further shows that enriched genes are differentially associated with pathways relating to sperm motility, acrosome reaction, single fertilization, and the regulation of signal transduction GO terms. In particular, the pre-ovulation oviduct stimulates the Catsper channels for sperm Ca2+ influx, with AKAPs, CATSPERs, and CABYR genes being positive regulators while PKIs and CRISP1 genes appear to be inhibitors of the process. We postulate that the stimulation of PKIs and CRISP1 genes in the pre-ovulation sperm reservoir/adjacent isthmus, mediated by SP, act to prevent premature massive capacitation prior to ovulation.


1996 ◽  
Vol 270 (3) ◽  
pp. C885-C891 ◽  
Author(s):  
R. J. Hughes ◽  
K. L. Anderson ◽  
D. Kiel ◽  
P. A. Insel

Beta-adrenergic receptor kinase is a member of the G protein-linked receptor kinase (GRK1) family that elicits receptor desensitization. We have cloned GRK2 from S49 mouse lymphoma cells. The nucleotide sequences of rat GRK2 and GRK3 were aligned and conserved primers chosen for use in reverse transcription-polymerase chain reaction (RT-PCR) of S49 mRNA. Direct sequencing of the PCR fragment provided a rapid means to identify the expression of the GRK2 but not the GRK3 transcript in these cells. Unique expression of GRK2 in S49 cells was confirmed by Western blotting. Three additional pairs of primers were chosen from the rat GRK2 sequence to amplify overlapping regions that together encompassed the entire coding sequence. After attempts to ligate the four fragments of S49 cell GRK2 cDNA by using PCR proved unsuccessful, the intact cDNA was assembled by digesting the PCR products in the region of the overlaps and ligating them in a single step into pBlue-script SK(+).


1995 ◽  
Vol 41 (4) ◽  
pp. 553-556 ◽  
Author(s):  
J Thonnard ◽  
F Deldime ◽  
M Heusterspreute ◽  
B Delepaut ◽  
F Hanon ◽  
...  

Abstract In the last few years, a variety of DNA-based human leukocyte antigen (HLA) typing methods have emerged, revealing the extreme polymorphism of HLA genes. This polymorphism makes it difficult for a clinical laboratory to establish the best HLA typing strategy. In this study we have compared two techniques for performing HLA-DRB typing: a commercial rapid assay based on the polymerase chain reaction (PCR) followed by reverse dot-blot hybridization of the PCR products (the Inno-LiPA assay), and a method based on PCR followed by restriction fragment length polymorphism analysis. We found that both methods provide reliable results with a high rate of concordance (97%) and that Inno-LiPA is convenient for large-scale routine typing. However, if a high-resolution allelic typing is required, each method lacks accuracy but using them in association improves the accuracy of the results.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
V. Bianchi ◽  
F. Martino ◽  
S. Piccinini ◽  
A. Pinca ◽  
G. Sida ◽  
...  

Obiettivi: Il monitoraggio terapeutico levetiracetam, nuovo farmaco anti-convulsivante può essere indicato in pazienti le cui condizioni potrebbero alterare le caratteristiche farmacocinetiche, nella personalizzazione della singola posologia e nella valutazione della compliance del paziente. In questo studio, per il dosaggio del levetiracetam viene confrontato il metodo validato Bio-Rad HPLC attualmente in uso con il metodo ARKTM immunologico con strumenti statistici avanzati. Metodi: Le concentrazioni di levetiracetam di 63 campioni sono stati determinati utilizzando: 1) "Levetiracetam mediante HPLC" kit da Bio-Rad (Hercules, CA) sul sistema HPLC Agilent 1100 e 2) immunologico "ARKTM Levetiracetam" di ARK Diagnostics Inc. (Fremont, CA) sulla piattaforma CDx90 da Thermo Fisher Scientific Inc. Risultati: L’imprecisione e il bias intra-laboratorio del nuovo metodo, valutati su un periodo di 20 giorni, sono stati rispettivamente 7,4% e 0,5% a 7,5 μg/mL, 4,5% e 1,9% a 30 μg/mL, 3,1% e 2,0% a 75 μg /mL. Analisi di regressione Passign-Bablok (X: Bio- Rad, Y: Ark) ha mostrato una intercetta non significativo di 0,16 (95% CI -0.55- 0.72) e una pendenza marginalmente significativa di 0,95 (95% CI ,90-0,99) che suggerisce un minimo errore sistematico proporzionale. Anche l’analisi Bland- Altman ha mostrato un minimo bias sistematico di 1,0 mg/mL (95% CI 0,32-1,69) con il 95% delle differenze HPLC-Ark vanno da -4.3 (95% CI -5,52 - (-) 3.16) e 6,3 (95% CI 5,16-7,52). I dati hanno mostrato che i valori ottenuti dai due metodi sono da considerarsi identici sia entro l’imprecisione intrinseca così come per le specifiche di qualità analitiche (errore massimo ammissibile il 15%). Conclusioni: Il nuovo metodo ARKTM sulla piattaforma CDx è accettabile e può essere utilizzato per misurare la concentrazione di routine levetiracetam. In particolare, poiché il metodo immunologico abbassa drasticamente il TAT è più facile ed immediato l’aggiustamento della posologia nei pazienti critici.


Sign in / Sign up

Export Citation Format

Share Document