Denitrification capacity in the vadose zone at three sites in the Lake Taupo catchment, New Zealand

Soil Research ◽  
2007 ◽  
Vol 45 (2) ◽  
pp. 91 ◽  
Author(s):  
Greg Barkle ◽  
Tim Clough ◽  
Roland Stenger

Land use in the Lake Taupo catchment is under scrutiny, as early signs of deteriorating water quality in Lake Taupo have been observed. Although the fate of contaminants in soil and groundwater are comparatively well studied, the transformations in the lower vadose zone, i.e. the zone between the soil and the groundwater, are less well understood. The capacity for NO3-N removal via biological denitrification, based on utilising the resident C substrate, in the vadose zone of the Lake Taupo catchment is quantified in this work. Complete vadose zone profiles were sampled at 3 sites (Rangiatea, Waihora, and Kinloch), from the soil surface down to the watertable in approximately 0.5-m depth increments. Texture, allophane content, pH, and concentrations of extractable NO3-N, NH4-N, and dissolved organic carbon were determined. Incubations were undertaken to determine the denitrification capacity of the vadose zone materials amended with NO3-15N, but no added carbon substrate, and maintained under anaerobic conditions at 28°C. Gas samples were taken from the headspace after 48 h and analysed for N2 and N2O. In soil depths down to about 1.2 m, the denitrification capacity ranged from 0.03 to 9.18 kg N/ha.day, and below this depth it ranged from <0.01 to 0.09 kg N/ha.day. A palaeosol layer in the Waihora profile had an enhanced denitrification capacity compared with the other samples in deeper zones of the profiles. In the surface sampling, at least 99.9% of the gas recovered from the 15N applied was in the form of N2. In contrast, no N2 gas production could be detected in any sample from below the second sampling depth, with only N2O detected. Denitrification capacities of all vadose zone materials were low when compared with other studies. Thus, careful land management is required to avoid groundwater contamination by nitrate leaching from the root-zone of the pasture.

2017 ◽  
Vol 33 (6) ◽  
pp. 849-857
Author(s):  
J. D. Jabro ◽  
W. M. Iversen ◽  
W. B. Stevens ◽  
B. L. Allen ◽  
U. M. Sainju

Abstract.Effective monitoring of chemical transport through the soil profile requires accurate and appropriate instrumentation to measure drainage water fluxes below the root zone of cropping systems. The objectives of this study were to methodically describe in detail the construction and installation of a novel automated PCAP (passive capillary) lysimeter design, and to evaluate the efficacy of this design for logging and monitoring real-time drainage water fluxes occurring below the root zone of corn ( L.) and soybean ( L.) under an overhead sprinkler irrigation system. Sixteen cylindrical PCAP lysimeters with outside dimensions of 32.39 cm in diameter ×74.8 cm height (1000 cm2 surface area) were designed, constructed, and placed 90 cm below the soil surface in a Lihen sandy loam. Two watermark soil moisture and temperature sensors were positioned at 30 and 76 cm depths above each PCAP to monitor soil temperature and water potential continuously. This new design incorporated wireless spread spectrum technology to enable an automated datalogger to transmit drainage water amounts simultaneously every 15 min to a remote host. Logged drainage amounts were compared with those manually collected using several statistical methods. The root mean square error (RMSE), the logging efficacy (EF), and the mean difference (MD) were 0.0375, 0.964 and 0.0335 cm, respectively, for 4-yr combined data. The MD between logged and collected drainage amounts was very small and not significantly different from zero for 4-yr combined results. Statistical results indicated that the new lysimeter performed exceptionally well and was capable of monitoring drainage water fluxes in the vadose zone. Real-time seamless monitoring and logging drainage water fluxes was thus possible without the need for costly time-consuming supportive procedures. Keywords: Drainage, Lysimeter, Root zone, Vadose zone.


1999 ◽  
Vol 39 (12) ◽  
pp. 257-264 ◽  
Author(s):  
Hans E. Andersen ◽  
Brian Kronvang ◽  
Søren E. Larsen

An empirical leaching model was applied to data on agricultural practices at the field level within 6 small Danish agricultural catchments in order to document any changes in nitrogen (N) leaching from the root zone during the period 1989-96. The model calculations performed at normal climate revealed an average reduction in N-leaching that amounted to 30% in the loamy catchments and 9% in the sandy catchments. The reductions in N leaching could be ascribed to several improvements in agricultural practices during the study period: (i) regulations on livestock density; (ii) regulations on the utilisation of animal manure; (iii) regulations concerning application practices for manure. The average annual total N-loss from agricultural areas to surface water constituted only 54% of the annual average N leached from the root zone in the three loamy catchments and 17% in the three sandy catchments. Thus, subsurface N-removal processes are capable of removing large amounts of N leached from agricultural land. An empirical model for the annual diffuse N-loss to streams from small catchments is presented. The model predicts annual N-loss as a function of the average annual use of mineral fertiliser and manure in the catchment and the total annual runoff from the unsaturated zone.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Yuhui Zheng ◽  
Yanyan Zhao ◽  
Shenglin Xue ◽  
Wei Wang ◽  
Yajing Wang ◽  
...  

The feeding value of replacing concentrate with cassava (Manihot esculenta) residue in the feed of Holstein cows was confirmed using an in vitro gas test. The treatments consisted of 0% (control, CON), 5%, 10%, 15%, 20%, 25%, and 30% inclusion of cassava residue in fermentation culture medium composed of buffer solution (50 mL) and filtrated rumen fluid (25 mL). The parameters analyzed included the kinetics of gas production and fermentation indexes. Forty-eight hours later, there were no significant differences on in vitro dry matter disappearance (IVDMD), pH, and microbial crude protein (MCP) content among treatments (p > 0.05). However, the “cumulative gas production at 48 h” (GP48), the “asymptotic gas production” (A), and the “maximum gas production rate” (RmaxG) all increased linearly or quadratically (p < 0.01). The GP48 was significantly higher in the 25% treatment compared to the other treatments, except for the 30% (p < 0.01). The A was significantly larger in the 25% treatment compared to the other treatments, except for the 20% and 30% (p < 0.01). The RmaxG was distinctly larger in the 25% treatment compared to other treatments (p < 0.01); moreover, the “time at which RmaxG is reached” (TRmaxG) and the “time at which the maximum rate of substrate degradation is reached” (TRmaxS) were significantly higher in the 25% treatment than the CON, 20%, and 30% treatments (p < 0.01). Additionally, the content of ammonia-N (NH3-N) in all treatments showed linearly and quadratically decreases (p < 0.01), whereas total volatile fatty acid (VFA), iso-butyrate, butyrate, and iso-valerate contents changed quadratically (p = 0.02, p = 0.05, p = 0.01, and p = 0.02, respectively); all of these values peaked in the 25% treatment. In summary, the 25% treatment was associated with more in vitro gas and VFA production, indicating that this cassava residue inclusion level may be used to replace concentrate in the feed of Holstein cows. However, these results need to be verified in vivo.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 713
Author(s):  
Edward G. Barrett-Lennard ◽  
Rushna Munir ◽  
Dana Mulvany ◽  
Laine Williamson ◽  
Glen Riethmuller ◽  
...  

This paper focuses on the adverse effects of soil sodicity and alkalinity on the growth of barley (Hordeum vulgare L.) in a rainfed environment in south-western Australia. These conditions cause the accumulation of salt (called ‘transient salinity’) in the root zone, which decreases the solute potential of the soil solution, particularly at the end of the growing season as the soil dries. We hypothesized that two approaches could help overcome this stress: (a) improved micro-water harvesting at the soil surface, which would help maintain soil hydration, decreasing the salinity of the soil solution, and (b) soil amelioration using small amounts of gypsum, elemental sulfur or gypsum plus elemental sulfur, which would ensure greater salt leaching. In our experiments, improved micro-water harvesting was achieved using a tillage technique consisting of exaggerated mounds between furrows and the covering of these mounds with plastic sheeting. The combination of the mounds and the application of a low rate of gypsum in the furrow (50 kg ha−1) increased yields of barley grain by 70% in 2019 and by 57% in 2020, relative to a control treatment with conventional tillage, no plastic sheeting and no amendment. These increases in yield were related to changes in ion concentrations in the soil and to changes in apparent electrical conductivity measured with the EM38.


2021 ◽  
Vol 5 (2) ◽  
pp. 428-433
Author(s):  
John M. Peter ◽  
M. U. Hamisu

In this study, two models are computed which are modified penman's monteith and Hargreaves – Samani model. The essence is to provide qualitative information related to the antagonistic effect of climate change on sustainable crop production through qualitative understanding of evaporation and transpiration processes in simple term evapotranspiration (ETo). This is computed using climatic parameters obtained from Abubakar Tafawa Balewa University; Agro weather station, Bauchi for the period of three years. This describes the two processes of water loss on plants, at first, through transpiration and on another note, on the soil surface by evaporation. The study deduced a comparative analysis on aforementioned Methods to determine the evaporating power of the atmosphere in improving crops yield and production through estimating the amount of water needed at the root zone of the plant and also, the seasonal variation during the study. The result of this study shows a little deviation in the two models. The model based on Modified Penman's Monteith displays optimal evapotranspiration. This makes the model satisfy its creation for estimation of reference evapotranspiration. In May, June, September, and October for 2013-2015, high trends are recorded. While In July and August low trend was recorded between climatic parameter and the estimated evapotranspiration. The statistical analyses also show that there is a linear relationship between the two estimated models. In the above months, it shows that application of water is needed for the healthy growth of crops and improved crops yield


2018 ◽  
Vol 19 (4) ◽  
pp. 1008-1016 ◽  
Author(s):  
J. Caprario ◽  
A. S. Rech ◽  
A. R. Finotti

Abstract The decline in groundwater availability and quality has become a worldwide issue and has been the subject of several studies in recent decades. In this sense, the goal of this study is to assess the vulnerability of the Campeche Aquifer (Florianopolis, Brazil), identifying potential areas of possible contamination by the direct infiltration of runoff in drainage compensatory techniques. To achieve this goal, the following methodological steps were used: (1) data collection and preparation, (2) application of the DRASTIC model, (3) sensitivity analysis and (4) analysis of potential contamination by compensatory techniques. The results show that approximately 33% of the aquifer area presented moderate vulnerability to contamination. However, 29% of the remaining areas had high and extremely high vulnerability. Analysing the potential of contamination with drainage compensatory structures we verified that approximately 95% of them are located in areas of vulnerability classified as moderate and high. The other 5% were identified in areas with extremely high vulnerability. Sensitivity analyses indicated that the removal of topography, soil type and the impact of the vadose zone caused a large variation in vulnerability index. It is evident that there is a high potential of contamination of groundwater by direct infiltration of drainage compensatory structures.


2016 ◽  
Vol 20 (8) ◽  
pp. 3099-3108 ◽  
Author(s):  
Tuvia Turkeltaub ◽  
Daniel Kurtzman ◽  
Ofer Dahan

Abstract. Nitrate is considered the most common non-point pollutant in groundwater. It is often attributed to agricultural management, when excess application of nitrogen fertilizer leaches below the root zone and is eventually transported as nitrate through the unsaturated zone to the water table. A lag time of years to decades between processes occurring in the root zone and their final imprint on groundwater quality prevents proper decision-making on land use and groundwater-resource management. This study implemented the vadose-zone monitoring system (VMS) under a commercial crop field. Data obtained by the VMS for 6 years allowed, for the first time known to us, a unique detailed tracking of water percolation and nitrate migration from the surface through the entire vadose zone to the water table at 18.5 m depth. A nitrate concentration time series, which varied with time and depth, revealed – in real time – a major pulse of nitrate mass propagating down through the vadose zone from the root zone toward the water table. Analysis of stable nitrate isotopes indicated that manure is the prevalent source of nitrate in the deep vadose zone and that nitrogen transformation processes have little effect on nitrate isotopic signature. The total nitrogen mass calculations emphasized the nitrate mass migration towards the water table. Furthermore, the simulated pore-water velocity through analytical solution of the convection–dispersion equation shows that nitrate migration time from land surface to groundwater is relatively rapid, approximately 5.9 years. Ultimately, agricultural land uses, which are constrained to high nitrogen application rates and coarse soil texture, are prone to inducing substantial nitrate leaching.


1997 ◽  
Vol 40 (5) ◽  
pp. 1321-1327 ◽  
Author(s):  
A. Katupitiya ◽  
D. E. Eisenhauer ◽  
R. B. Ferguson ◽  
R. F. Spalding ◽  
F. W. Roeth ◽  
...  

Weed Science ◽  
1988 ◽  
Vol 36 (5) ◽  
pp. 683-687 ◽  
Author(s):  
Richard W. Jones ◽  
W. Thomas Lanini ◽  
Joseph G. Hancock

Gliocladium virens, when grown on peat moss amended with sucrose and ammonium nitrate and then applied to soil, resulted in root necrosis. Herbicidal activity was correlated with fungal production of the phytotoxin viridiol. Viridiol had a wide spectrum of activity; it was particularly effective against annual composite species but was less effective in monocot control. Emergence of most weeds was reduced >90% at application rates of 8.7% (of total volume) or less. Treated seedling dry weights were drastically reduced. Applications of 4.5% reduced root and shoot weight of redroot pigweed by 93 and 98%, respectively. Crops were affected at higher treatment levels; however, the toxicity was readily avoided by applying the mycoherbicide out of the root zone of the crop, instead applying it between the seed and the soil surface. Viridiol production, which confers herbicidal activity, was detected 3 days after incorporation of the fungus-peat mixture. Viridiol production peaked on days 5 and 6 at approximately 25 μg viridiol/100 ml soil, based upon an application rate of 11%, then declined to undetectable levels by the end of 2 weeks.


Author(s):  
Irina Alina Chera Anghel ◽  
Loredana Popescu

The most commonly used insulating liquid in transformers is mineral oil. Special synthetic applications such as silicone, ester, perchloroethene, etc. are used today in special applications, with different characteristics, very low or nonexistent toxicity to mineral oils used in transformers. On the other hand, they have a much better biodegradability than mineral oils in both aerobic and anaerobic conditions. But they cannot directly replace the mineral oil in operation or in repaired units. They have dielectric properties and good heat transfer but have limited their use to special transformers due to the relatively high cost and availability.


Sign in / Sign up

Export Citation Format

Share Document