Soil amendments modify phosphate sorption in an acid soil: the importance of P source (KH2PO4, TSP, DAP)

Soil Research ◽  
2007 ◽  
Vol 45 (4) ◽  
pp. 246 ◽  
Author(s):  
C. R. Schefe ◽  
A. F. Patti ◽  
T. S. Clune ◽  
W. R. Jackson

Soil acidity is a widespread problem in Victoria, Australia, affecting at least 4 million ha of agricultural land. Soil amendments such as lime and organic materials may ameliorate acid soils, resulting in raised soil pH and increased availability of plant nutrients such as phosphorus (P). The addition of lime, lignite, and compost significantly modified P sorption in an acid soil, with the degree of change highly dependent upon the source of P applied. The application of 2.5 t/ha of lime increased P sorption for all P sources, while P sorption was decreased in the lignite and compost treatments when di-ammonium phosphate (DAP) was applied. Lime and compost addition increased the solution pH, with no change in pH in the lignite treatment. Addition of TSP decreased the pH in all treatments, while DAP addition only increased solution pH in the untreated soil and the lignite treatment. The addition of soil amendments had a significant effect on solution cation concentrations, due to both the influx of cations, and the resultant changes in solution pH. The source of P applied (KH2PO4, TSP (triple superphosphate), DAP) also had a significant effect due to both the counter-ions present and the pH of each P source (e.g. TSP pH 2.7; DAP pH 7.4). The lignite treatment decreased total P sorption relative to the other amendments. The combination of lignite and DAP resulted in both the greatest decrease in P sorption, and the formation of soluble Al–organic complexes. Therefore, a combination of lignite and DAP may be of use in decreasing P sorption in acid soils.


2018 ◽  
Vol 69 (3) ◽  
pp. 242 ◽  
Author(s):  
Peter R. Ryan

Acid soils (pH <5.0) continue to limit the yields of Australia’s major crops and restrict their cultivation. These soils pose various abiotic stresses that restrict or affect plant growth in different ways. Chief among these stresses is aluminium (Al3+) toxicity, which inhibits root growth. Soil acidification can occur naturally but certain agricultural practices accelerate the process. The most effective management practice for slowing and reversing acidification is the application of lime (calcium carbonate). Liming has increased over the last 25 years but it can take several years to ameliorate subsoil acidity and the application rates in some areas remain too low to avoid further acidification. If left unmanaged, acidification will degrade agricultural land and cause larger yield losses in the future. Crops that are better adapted to acid soils are important resources because they help to maintain production while amelioration efforts continue. Significant genotypic variation for acid-soil tolerance has been reported in wheat, barley and pulse species and improvements to yield are likely by pyramiding the optimal genetic loci controlling this trait through breeding. Further increases in production might also be possible with wider crosses to related species and through genetic engineering. This review assesses the potential of genetics and biotechnology for increasing the yields of Australia’s major grain crops on acid soils.



1977 ◽  
Vol 57 (2) ◽  
pp. 157-164 ◽  
Author(s):  
D. C. PENNEY ◽  
M. NYBORG ◽  
P. B. HOYT ◽  
W. A. RICE ◽  
B. SIEMENS ◽  
...  

The amount of cultivated acid soil in Alberta and northeastern British Columbia was estimated from pH values of farm samples analyzed by the Alberta Soil Testing Laboratory, and the effect of soil acidity on crops was assessed from field experiments on 28 typical acid soils. The field experiments consisted of two cultivars of barley (Hordeum vulgare L.) and one cultivar each of rapeseed (Brassica campestris L.), red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) grown with and without lime for 2 yr. There are about 30,000 ha of soils with a pH of 5.0 or less where soil acidity seriously restricts yields of all four crop species. There are approximately 300,000 ha with a soil pH of 5.1–5.5 where liming will on the average increase yields of alfalfa by 100%, yields of barley by 10–15%, and yields of rapeseed and red clover by 5–10%. There are a further 1,600,000 ha where soil pH ranges from 5.6 to 6.0 and liming will increase yields of alfalfa by approximately 50% and yields of barley, rapeseed and red clover by at least 4–5%.



2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ali Maru ◽  
Osumanu Ahmed Haruna ◽  
Walter Charles Primus

The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%.



2021 ◽  
Vol 15 (1) ◽  
Author(s):  
L. Osipova ◽  
O. Radionova ◽  
L. Tkachenko ◽  
T. Abramova

The analysis of the current state of processing of secondary raw materials of wine-making in Ukraine is given. It is proved that the latter is a rich source of biologically active compounds, including phenolic ones, which makes it possible to use it for the production of a wide range of products (raccoon, polyphenol extracts, tartaric acid, beverages, fertilizers, grape oil, cake, vitamin D, animal feed, food powder, abrasives) with high consumer value for various industries: food, pharmaceutical, perfume and cosmetics, chemical, feed, etc. In the light of modern research, the role of phenolic compounds as essential nutrition factors that cannot remain out of the field of view of physiologists, pharmacologists, and food hygiene specialists is shown. However, currently in Ukraine there are no specialized enterprises for complex processing of secondary raw materials of winemaking; traditional technologies are not effective from a technological, economic and environmental point of view, which indicates not rational use of resources and loss of material resources; there are no systematic studies on physical and chemical, microbiological, Toxicological composition in order to determine the optimal direction of its use. A limiting factor is also the lack of comparative analysis of innovative domestic and foreign technologies for processing secondary raw materials of winemaking. In the vast majority of cases, in particular, combs and pomace are taken out of control to agricultural land without special treatment, which leads to acid soil erosion and pollution of the environment with metabolites of micromycetes, increasing one of the global problems of mankind-environmental. At the present stage of technological development, there are a number of innovative developments in the field of processing secondary raw materials, in particular grape pomace, in order to obtain biologically active additives, the limiting factor for the introduction of which is the lack of domestic and expensive imported equipment. A promising way to solve the existing problems is to create a mechanism that will unite the interests of wineries (producers of secondary raw materials of winemaking), processing enterprises (producers of products from secondary raw materials of winemaking), scientists and potential consumers of innovative products. Consolidation of the above-mentioned institutions and enterprises is possible by creating clusters for the development and implementation of innovative technologies and equipment



Soil Research ◽  
1992 ◽  
Vol 30 (5) ◽  
pp. 737 ◽  
Author(s):  
IJ Rochester ◽  
GA Constable ◽  
DA Macleod

The literature pertaining to N immobilization indicates that ammonium is immobilized in preference to nitrate. Our previous research in an alkaline clay soil has indicated substantial immobilization of nitrate. To verify the preference for immobilization of nitrate or ammonium by the microbial biomass in this and other soil types, the immobilization of ammonium and nitrate from applications of ammonium sulfate and potassium nitrate following the addition of cotton crop stubble was monitored in six soils. The preference for ammonium or nitrate immobilization was highly correlated with each soil's pH, C/N ratio and its nitrification capacity. Nitrate was immobilized in preference to ammonium in neutral and alkaline soils; ammonium was preferentially immobilized in acid soils. No assimilation of nitrate (or nitrification) occurred in the most acid soil. Similarly, little assimilation of ammonium occurred in the most alkaline soil. Two physiological pathways, the nitrate assimilation pathway and the ammonium assimilation pathway, appear to operate concurrently; the dominance of one pathway over the other is indicated by soil pH. The addition of a nitrification inhibitor to an alkaline soil enhanced the immobilization of ammonium. Recovery of 15N confirmed that N was not denitrified, but was biologically immobilized. The immobilization of 1 5 ~ and the apparent immobilization of N were similar in magnitude. The identification of preferential nitrate immobilization has profound biological significance for the cycling of N in alkaline soils.



2016 ◽  
Vol 1 (2) ◽  
pp. 73
Author(s):  
Arief Vivi Noviati ◽  
Sri Hutami ◽  
Ika Mariska ◽  
Endang Sjamsudin

<p class="p1">Aluminum toxicity is a major constraint to soybean production in acid soils. Since variabilities on Al tolerance in plants are very limited, mutation breeding, and <em>in vitro </em>selection were used to increase the variability. Three soyben genotypes were produced from cultivars Wilis and Sindoro that have been gamma irradiated and selected <em>in vitro </em>for their tolerance to Al on Al and low pH media. These genotypes and their original cultivars were then planted in a greenhouse in an acid soil on May 2001. The results showed that the plant performances were varied, some were shorter and more compact than the original. Based on the yield components, a number of plants from the genotypes showed higher than those of the control cultivars. These plants were considered more tolerant to Al than the original cultivars.</p>



2012 ◽  
Vol 13 (1) ◽  
pp. 82
Author(s):  
Dewi Indriyani Roslim ◽  
Miftahudin Miftahudin ◽  
Utut Suharsono ◽  
Hajrial Aswidinnoor ◽  
Alex Hartana

Aluminum (Al) is one of the major limited factors in crop production on acid soils. Aluminum tolerant plants can beselected from plant breeding program by one of the physiological parameters representing Al tolerance character,such as root re-growth capability during recovery from the Al-stress. In this study we determined the concentrationand time exposure of Al stress that was able to differentiate the response of three local upland rice varieties(Grogol, Hawarabunar and Krowal) and an Al-sensitive rice variety (IR64) to Al-stress, and evaluated the effectivenessof root re-growth (RRG) characters as an Al tolerance parameter in rice. The study consisted of three experiments,which were 1) nutrient culture experiment with different Al concentration treatments in growth chamber, 2) potexperiment in greenhouse using Jasinga yellow red podzolic acid soil containing 26,66 me/100 g Al and pH 4,6 asplanting media, and 3) phenotyping of F2 population using RRG character. The results showed that Al treatment at15 ppm for 72 h was able to distinctly differentiate between Al-tolerant (Grogol and Hawarabunar) and Al-sensitivevarieties (Krowal and IR64). Planting of the rice varieties on acid soils showed similar result as that of the nutrientculture. Phenotyping of F2 population using RRG character indicated the existence of RRG value variation. Thesevariations demonstrated that RRG character can be used as an Al tolerance parameter in rice and therefore can beeffectively applied to screen rice F2 population that segregate to Al tolerance character.



1976 ◽  
Vol 56 (3) ◽  
pp. 129-138 ◽  
Author(s):  
A. J. MACLEAN

The Cd concentration in 10 plant species grown in a neutral surface soil (0.65 ppm Cd) varied from 0.18 ppm in potato tubers to 0.99 ppm in soybean roots on a dry matter basis. Addition of 5 ppm Cd increased the concentrations in the plants markedly and they were particularly high in lettuce (10.36 ppm) and tobacco leaves (11.57 ppm). Cd concentrations tended to be lower in the edible portion (seed, fruit, tubers) than in other plant parts. Added Cd affected yields in only a few instances. But in another experiment, Cd added at a rate of 5 ppm to five soils decreased the yield of lettuce in most instances. In a comparison of results for two similarly managed sandy loam soils, nearly neutral in reaction but differing in organic matter content (2.17 vs. 15.95% organic C), the concentration of Cd was lower in lettuce grown in the soil with the higher amount of organic matter. The Cd content of the lettuce was reduced by liming some of the acid soils. Addition of Cd increased the concentration of Zn in the plants appreciably, but added Zn did not affect Cd uptake. In an incubation experiment comprising five soils, DTPA (diethylenetriamine-pentaacetic acid) extractable Cd decreased with liming of three Cd-treated acid soil samples. In comparisons of two sandy loam soils and of surface and subsoil layers of a sand, extractable Cd increased with higher amounts of soil organic matter.



2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mesfin Kassa Cholbe ◽  
Fassil Kebede Yeme ◽  
Wassie Haile Woldeyohannes

Information on soil fertility status of acid soil of a particular area as affected by land use type is important for developing sound soil management systems for improved and sustainable agricultural productivity. The main objective of this study was to assess the fertility status and effect of land use change on soil physicochemical properties. In this study, adjacent three land use types, namely, enset-coffee, crop, and grazing land use were considered in four districts (i.e., Bolos Sore, Damot Gale, Damot Sore, and Sodo Zuria) of Wolaita Zone, southern Ethiopia. Soil samples were collected from a depth of 0–20 cm from each land use type of the respective districts for physicochemical analyses. The results showed that land use types significantly affected ( P ≤ 0.05 ) soil properties such as bulk density, available P, exchangeable potassium, exchangeable acidity, exchangeable bases (Na, K, Ca, Mg), exchangeable acidity, and CEC. Besides, soil pH, OC, and TN were influenced significantly ( P ≤ 0.05 ) both by districts and land use types. The very strongly acidic soils were found predominantly in the crop and grazing lands whereas a neutral acidity level was found in the enset-coffee land use type of four districts. In conclusion, the study proves that land use type change within the same geographic setting can affect the severity of soil acidity due to over cultivation and rapid organic matter decomposition. Finally, the study recommends an in-depth study and analysis on the root causes in aggravating soil acidity under crop and grazing land use types.



Sign in / Sign up

Export Citation Format

Share Document