An assessment of the guidelines in Victoria, Australia, for land application of biosolids based on plant-available nitrogen

Soil Research ◽  
2013 ◽  
Vol 51 (6) ◽  
pp. 529 ◽  
Author(s):  
Sami Al-Dhumri ◽  
Firew H. Beshah ◽  
Nichola A. Porter ◽  
Barry Meehan ◽  
Roger Wrigley

In the application of biosolids to land for agricultural purposes, the supply of plant-available nitrogen (PAN) should match the crop requirements. This ensures that the crop yield is maximised while minimising the environmental risk from over-application. In Victoria, the amount to be applied is usually calculated according to the State EPA guidelines using the nitrogen limited biosolids application rates (NLBAR). These guidelines specify the mineralisation rates to be used in the NLBAR calculation for different types of biosolids. However, these rates have not been validated for Victorian soils and agricultural production systems. To test the veracity of these rates, this study quantified the amount of PAN for two different biosolids (anaerobically digested biosolids, ANDB; and aerobically digested biosolids, ADB) added to two types of soils, a sandy loam at Lara and a clay loam at the Melton Recycled Water Plant, Surbiton Park, Melton. The PAN was calculated by determining the N fertiliser equivalence of the biosolids. To achieve this, two field calibration plots were prepared, one for the biosolids and one for urea as the N fertiliser. Biosolids were applied based on total N at six rates (0, 68, 136, 204, 340 and 510 kg N ha–1); urea was applied at six rates (0, 60, 120, 180, 240 and 280 kg N ha–1). Perennial ryegrass (Lolium perenne) was planted 1 day after the application of biosolids and harvested after 120 days. The calculated amount of mineralisable organic N in ANDB was estimated to be 41% and 39% when applied to the clay loam and sandy loam soils, respectively; for ADB, it was 12% and 9%, respectively. These values indicate that the organic N mineralisation rates provided in the EPA Victoria guidelines (15% for ANDB and 25% for ADB) might not always be applicable. Also of note is that the values obtained for the each of the biosolids appear to be independent of the soil type.

Soil Research ◽  
2008 ◽  
Vol 46 (5) ◽  
pp. 423 ◽  
Author(s):  
S. M. Eldridge ◽  
K. Y. Chan ◽  
Z. H. Xu ◽  
C. R. Chen ◽  
I. Barchia

Current State government guidelines attempt to ensure that the supply of plant available nitrogen (PAN) from land-applied biosolids does not exceed the crop’s requirement for mineral nitrogen (N), in order to minimise the risk of excess nitrate contaminating surface and groundwater. In estimating a suitable application rate, current guideline methodology assumes a fixed proportion of the organic N in the biosolids will be mineralised in the first year following the application for all situations. Our study included a field trial and a field incubation study to assess N mineralisation for both a granulated biosolid and a dewatered biosolid product, together with an additional laboratory incubation study for the granulated biosolid product. The application rates were 12, 24, and 48 dry t/ha for the granulated biosolids and 22 dry t/ha for the dewatered biosolids. Our results showed that the guideline procedure underestimated the supply of mineral N from the biosolid-treated soils, with more than 3 times the predicted amount being supplied by the biosolids at all application rates. The excess supply of mineral N was due to a much larger proportion of the biosolid organic N being mineralised than the assumed 25%, as well as a significant contribution of mineral N from the soil itself (which is ignored in the estimation calculation). The proportion of biosolid organic N mineralised in the 12-month field incubation study for the 3 granulated biosolid treatments (12, 24, and 48 dry t/ha) and the dewatered biosolid treatment (22 dry t/ha) were estimated to be 54%, 48%, 45%, and 53%, respectively, in our field incubation study. Both the laboratory and field incubation studies found that most of the biosolid mineralisable organic N was mineralised rapidly during the early stages of the incubation. In the field incubation, the 24 dry t/ha granulated biosolid treatment had 35% of its organic N mineralised within the first 2 months following application, while all granulated biosolid treatments in the laboratory incubations had by, day 29, supplied >50% of the mineral N they would supply for the whole 216-day incubation. This release pattern for the supply of PAN from biosolid organic N should be factored into fertiliser application strategies. Our study reveals some of the shortcomings of the currently recommended ‘one size fits all’ approach for estimating the PAN supply from land-applied biosolids. Further research on the development of an effective rapid assessment for the mineralisable N content in organic wastes and soils, in combination with modelling, may improve our capacity to predict PAN supply from land-applied organic wastes in the future.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Susan King ◽  
Michael Schwalb ◽  
David Giard ◽  
Joann Whalen ◽  
Suzelle Barrington

Swine manure subjected to in-storage psychrophilic anaerobic digestion (ISPAD) undergoes proteins degradation but limited NH3volatilization, producing an effluent rich in plant-available nitrogen. Accordingly, ISPAD effluent can offer a higher fertilizer value during land application, as compared to manure of similar age stored in an open tank. However, this additional nitrogen can also be lost by volatilization during land application. The objective of this study was therefore to measure NH3volatilization from both ISPAD and open tank swine manures when applied to 5 different soils, namely, washed sand, a Ste Rosalie clay, an Upland sandy loam, a St Bernard loam, and an Ormstown loam. This research was conducted using laboratory wind tunnels simulating land application. The five experimental soils offered similar pH values but different water holding capacity, cation exchange capacity, cation saturation, and organic matter. After 47 h of wind tunnel monitoring, the % of total available nitrogen (TAN orNH4 +and NH3) volatilized varied with both manure and soil type. For all soil types, the ISPAD manure consistently lost less NH3as compared to the open tank manure, averaging 53% less. Lower volatile solids content improving manure infiltration into the soil and a more complex ionic solution explain the effect of the ISPAD manure advantages. This was reinforced by the St Bernard sandy loam losing the same nitrogen mass for both manures, because of its higher pH and buffer pH coupled with an intermediate CEC resulting in more soil solution NH3. Within each manure type, % TAN volatilized was highest for washed sand and lowest for the clay soil. As a result, ISPAD manure can offer up to 21% more plant-available nitrogen fertilizer especially when the manure is not incorporated into the soil following its application.


2007 ◽  
Vol 87 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Bobbi L Helgason ◽  
Francis J Larney ◽  
H. Henry Janzen ◽  
Barry M Olson

The amount and pattern of plant-available nitrogen (N) release from composts are variable and not well-defined. We used a 425-d canola (Brassica napus L.) bioassay to follow the release of N from eight composted cattle manures applied to soil at 20 g kg-1. Two stockpiled manures, one inorganic fertilizer and an unamended control were also included for comparison. Eight consecutive 30-d growth cycles were conducted in a controlled environment chamber (20°C) and plant N uptake was measured. Total N uptake was greatest from the N fertilizer and least from the wood-chip bedded manure. Addition of compost increased N uptake by 27–99% compared with that in the control. Nitrogen uptake from compost was directly proportional to its inorganic N content (r2 = 0.98; P < 0.0001) showing that the initial inorganic N content of compost, analyzed prior to its application can be used to predict plant available N. In seven of the eight composts studied, less than 5% of organic N was mineralized over 425 d, suggesting that little of the organic N in compost becomes available in the year of application. Compost is a valuable organic amendment, but co-application of N fertilizer is recommended to supply adequate N and optimize the benefits of compost for crop growth. Key words: Plant-available nitrogen, compost, nitrogen mineralization, beef manure


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


2016 ◽  
Vol 56 (1) ◽  
pp. 38 ◽  
Author(s):  
Omur Kocak ◽  
Bulent Ekiz ◽  
Hulya Yalcintan ◽  
Akin Yakan ◽  
Alper Yilmaz

The aim of the study was to compare the meat quality characteristics of male lambs reared under organic (n = 9), intensive (n = 10) and traditional (n = 10) production systems. The average daily gain of organic lambs (121.4 g) was lower than lambs of intensive (161 g) and traditional (157.8 g) systems. Production system had no significant effect on carcass weight and dressing percentage. Differences among production systems for meat pH, drip loss, cooking loss, shear force value and colour characteristics were not significant. Traditional lambs had a higher percentage of total polyunsaturated fatty acids and polyunsaturated fatty acid : saturated fatty acid ratio, whereas organic lambs had the highest percentage of total n-3 polyunsaturated fatty acids and the lowest n-6 : n-3 ratio. In accordance with the meat fatty acid composition, meat from the organic and traditional systems used here was healthier than meat from intensive system. But the results of sensory assessment indicate that meat from traditional system was found more acceptable by panellists in terms of flavour intensity, flavour acceptability and overall acceptability when compared with that of organic meat.


1965 ◽  
Vol 45 (6) ◽  
pp. 571-577 ◽  
Author(s):  
H. B. Specht ◽  
D. Chisholm

Furrow applications of Di-syston (O,O-diethyl S-2- (ethylthio)ethyl phosphorodithioate) for control of pea aphids, Acyrthosiphon pisum (Harris), on peas under greenhouse conditions showed that the Di-syston content of the plants reflected the application rates; absorption of Di-syston by the plants was greater on sandy loam than on clay loam; concentrations of Di-syston tended to be highest in the basal third of the pea vines and progressively lower in the middle and top thirds of the plants; slight phytotoxicity occurred on the lower leaves at 4 and 32 lb per acre (4.48 and 35.87 kg/ha) of toxicant but yields were not affected; soil moisture did not affect the uptake of Di-syston in the plant. Differences in uptake may be attributed to differences in the base exchange capacity of the soils.


2006 ◽  
Vol 86 (4) ◽  
pp. 613-620 ◽  
Author(s):  
C G Cogger ◽  
T A Forge ◽  
G H Neilsen

Biosolids are municipal wastewater treatment solids that meet regulatory standards for land application. Most biosolids are a rich source of N, P, and micronutrients. Although the use of biosolids on food crops remains controversial in the public eye, decades of research have led to the development of regulations for the safe and beneficial use of biosolids in agriculture. Emerging areas of research include biosolids in commercial and home horticulture, the fate of pathogens and organics in biosolids, the use of biosolids in the remediation of contaminated sites, and biosolids effects on soil ecology. Nutrient management remains the most critical day-to-day issue for land application of biosolids. Recent research on plant-available nitrogen (PAN) in biosolids has found that N availability is similar over a range of biosolids processing types, and that growing-season climate is a key factor affecting available N. Regionally based predictions of PAN have been developed for the United States, and could be extended into Canada. Relatively little is known about the effects of biosolids applications on soil ecology, but soil nematodes offer an opportunity to evaluate the structure and function of the soil ecosystem following biosolids applications. We have studied responses of nematode communities to application of municipal biosolids and composts, in forage production systems and orchards. Both types of amendments increased the abundance of enrichment opportunists, for up to 3 yr after single applications. These data on the persistence of increased enrichment opportunists have provided insight into the longevity of amendment-induced enhancement of biological activity and nutrient cycling. Cumulative biosolids applications of 90 Mg ha-1 have caused reductions in abundance of pollutant-sensitive Dorylaimida. The extent to which this change is the result of metal or nutrient loading is unclear and deserves more detailed study. Key words: Biosolids, plant-available nitrogen, soil ecology, nematodes


2008 ◽  
Vol 88 (4) ◽  
pp. 443-450 ◽  
Author(s):  
Joann K Whalen ◽  
Hicham Benslim ◽  
You Jiao ◽  
Benjamin K Sey

Compost contributes plant-available nutrients for crop production and adds partially decomposed carbon (C) to the soil organic carbon (SOC) pool. The effect of compost applications and other agricultural practices on SOC and total nitrogen (N) pools was determined in a sandy-loam Humic Gleysol at the Research Farm of McGill University, Ste-Anne-de-Bellevue, Quebec. Experimental plots with continuous silage corn (Zea mays L.) and silage corn-soybean (Glycine max L. Merr.) production were under conventional tillage (CT) or no-tillage (NT) management. Composted cattle manure was applied each spring at rates of 0, 5, 10 and 15 Mg (dry weight) ha-1 and supplemental NPK fertilizers were added to meet crop requirements. The C input from crop residues was affected by tillage, crop rotations and compost application, but differences in the SOC and total N pools were due to compost applications. After 5 yr, compost-amended plots gained 1.35 to 2.02 Mg C ha-1 yr-1 in the SOC pool and 0.18 to 0.24 Mg N ha-1 yr-1 in the total N pool, as compared with initial pool sizes when the experiment was initiated. These gains in SOC and total N were achieved with agronomic rates of compost and supplemental NPK fertilizers, selected to match the phosphorus requirements of silage corn. Such judicious use of compost has the potential to increase the SOC and total N pools in agroecosystems under annual crop production. Key words: Composted cattle manure, corn silage, mineral fertilizer, plant-available nitrogen, soil organic carbon


2019 ◽  
Vol 62 (1) ◽  
pp. 149-156 ◽  
Author(s):  
Lisa A. Durso ◽  
John E. Gilley ◽  
David B. Marx ◽  
Bryan L. Woodbury

Abstract. The effectiveness of a 1.4 m wide grass hedge in reducing microbial transport following manure application was examined in this study. Beef cattle manure was applied to 0.75 m wide by 4.0 m long plots established on an Aksarben silty clay loam located in southeast Nebraska. Manure was added at rates required to meet none or the 1-, 2-, or 4-year nitrogen requirements for corn. The transport of phages, total coliforms, , and enterococci was measured for three 30 min simulated rainfall events, which were separated by approximately 24 h intervals. The narrow grass hedge reduced total counts of phages, , and enterococci from 10.8 to 9.01 log PFU ha-1, from 12.4 to 11.9 log CFU ha-1, and from 11.8 to 11.2 log CFU ha-1, respectively. For the plots that received manure, no significant differences in transport of phages or enterococci were found among the three manure application rates. Rainfall simulation run significantly affected measurements of phages, total coliforms, and enterococci, with measurements during the three runs varying from 8.91 to 10.5 log PFU ha-1, from 12.7 to 13.3 log CFU ha-1, and from 11.2 to 11.7 log CFU ha-1, respectively. Counts for phages, total coliforms, and enterococci were significantly less for the first than the second and third rainfall simulation runs. All four of the microbial constituents were significantly correlated to dissolved P, particulate P, total P, and total N. A narrow grass hedge placed on the contour significantly reduced microbial transport following variable applications of beef cattle manure. Keywords: Bacteria, Cattle manure, E. coli, Filter strips, Land application, Manure management, Manure runoff, Microbial, Microorganisms, Runoff.


Soil Research ◽  
2012 ◽  
Vol 50 (2) ◽  
pp. 91 ◽  
Author(s):  
Guixin Pu ◽  
Mike Bell ◽  
Glenn Barry ◽  
Peter Want

One major benefit of land application of biosolids is to supply nitrogen (N) for agricultural crops, and understanding mineralisation processes is the key for better N-management strategies. Field studies were conducted to investigate the process of mineralisation of three biosolids products (aerobic, anaerobic, and thermally dried biosolids) incorporated into four different soils at rates of 7–90 wet t/ha in subtropical Queensland. Two of these studies also examined mineralisation rates of commonly used organic amendments (composts, manures, and sugarcane mill muds). Organic N in all biosolids products mineralised very rapidly under ambient conditions in subtropical Queensland, with rates much faster than from other common amendments. Biosolids mineralisation rates ranged from 30 to 80% of applied N during periods ranging from 3.5 to 18 months after biosolids application; these rates were much higher than those suggested in the biosolids land application guidelines established by the NSW EPA (15% for anaerobic and 25% for aerobic biosolids). There was no consistently significant difference in mineralisation rate between aerobic and anaerobic biosolids in our studies. When applied at similar rates of N addition, other organic amendments supplied much less N to the soil mineral N and plant N pools during the crop season. A significant proportion of the applied biosolids total N (up to 60%) was unaccounted for at the end of the observation period. High rates of N addition in calculated Nitrogen Limited Biosolids Application Rates (850–1250 kg N/ha) resulted in excessive accumulation of mineral N in the soil profile, which increases the environmental risks due to leaching, runoff, or gaseous N losses. Moreover, the rapid mineralisation of the biosolids organic N in these subtropical environments suggests that biosolids should be applied at lower rates than in temperate areas, and that care must be taken with the timing to maximise plant uptake and minimise possible leaching, runoff, or denitrification losses of mineralised N.


Sign in / Sign up

Export Citation Format

Share Document