4-Amino-1,2,4-triazole can be more effective than commercial nitrification inhibitors at high soil temperatures

Soil Research ◽  
2017 ◽  
Vol 55 (7) ◽  
pp. 715 ◽  
Author(s):  
Tariq Mahmood ◽  
Rehmat Ali ◽  
Asma Lodhi ◽  
Muhammad Sajid

Commercial nitrification inhibitors (NIs), namely nitrapyrin, 3,4-dimethylpyrazol phosphate (DMPP) and dicyandiamide (DCD), are ineffective at high temperatures. Therefore, it is imperative to explore new compounds that can be commercialised as effective NIs for warm climatic conditions. The aim of the present study was to compare the potential of 4-amino-1,2,4-triazole (ATC) with the two commercial NIs DMPP and DCD to delay nitrification of (NH4)2SO4 in an alkaline calcareous soil incubated under aerobic conditions at warm temperatures (35 and 25°C). Inhibitors were incorporated in (NH4)2SO4 granules and nitrification inhibition was calculated on the basis of net NH4+-N disappearance and net NO3–-N accumulation. At 35°C, the inhibitory effect of DCD and DMPP persisted only for 1 week, whereas ATC was effective up to 4 weeks. At 25°C, the inhibitory effect of ATC, DMPP and DCD was comparable. In another set of experiments, different concentrations of ATC (0.25–6% of N) were tested at three different temperatures (35, 25 and 18°C). At 35°C, ATC applied at 2% of N caused 63% inhibition for 2 weeks, whereas at a rate of 4–6% of N the inhibitory effect of ATC persisted up to 4 weeks (63–84% inhibition). At 25°C, ATC application at a rate of 1% of N caused 64% inhibition for 2 weeks; increasing the application rate to 2–6% of N prolonged the inhibitory effect up to 4 weeks (55–94% inhibition). At 18°C, a much lower concentration of ATC (0.25–0.5% of N) was required to achieve ≥50% inhibition for 2–4 weeks, whereas increasing the application rate to 2% of N caused 93% inhibition for 4 weeks. The results of the present study suggest that although commercially available NIs are ineffective at high summer temperatures, ATC may have the potential to be commercialised as an effective NI for warm as well as moderate climatic conditions.

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 599
Author(s):  
Hussnain Mukhtar ◽  
Yu-Pin Lin

The application of nitrification inhibitors (NIs) shows promise in prolonging the ammonium presence in soil with beneficial effects for agriculture ecosystems and climate change mitigation. Although the inhibitory effect (IE) of NIs has been studied in the presence of various environmental and edaphic conditions, little is known about the effect of soil nitrification potential (NP) on the effectiveness of NIs. Here, laboratory-scale experiments were conducted to investigate the effect of the variation in soil NP rates, among land-use type and temperature, on the performance of two nitrification inhibitors, dicyandiamide (DCD) and 3,4-dimethypyrazole phosphate (DMPP), at four NI application rates imposed upon eight cropland and non-cropland soils. We found that the IE of DCD and DMPP were organized according to soil NP rates. Nevertheless, NP was lower in non-cropped soil than in cropped systems, and DMPP-based inhibition was higher than DCD. The IE of both NIs decreased with NP and the amount of NI required to achieve an IE ≈ 50%, was significantly reduced for soils that exhibited the lowest NP rates, especially for DMPP. However, the temperature did not appear to have a major influence on IE of both DCD and DMPP, demonstrating the potential of NIs to inhibit nitrification for a wider temperature range, dependent on the NI application rate. Our findings provide evidence that change in soil NP rate has important influences on the efficacy of NI which required great consideration for N-fertilizer optimization with the application of nitrification inhibitors.


Author(s):  
Jasmeet Kaur-Bhambra ◽  
Daniel L. R. Wardak ◽  
James I. Prosser ◽  
Cécile Gubry-Rangin

AbstractNitrification is a major process within the nitrogen (N) cycle leading to global losses of N, including fertiliser N, from natural and agricultural systems and producing significant nitrous oxide emissions. One strategy for the mitigation of these losses involves nitrification inhibition by plant-derived biological nitrification inhibitors (BNIs). Cultivation-based studies of BNIs, including screening for new compounds, have predominantly investigated inhibition of a single ammonia-oxidising bacterium (AOB), Nitrosomonas europaea, even though ammonia oxidation in soil is usually dominated by ammonia-oxidising archaea (AOA), especially in acidic soils, and AOB Nitrosospira sp., rather than Nitrosomonas, in fertilised soils. This study aimed to assess the sensitivity of ammonia oxidation by a range of AOA and AOB pure cultures to BNIs produced by plant roots (methyl 3-(4-hydroxyphenyl) propionate, sakuranetin and 1,9-decanediol) and shoots (linoleic acid, linolenic acid and methyl linoleate). AOA were generally more sensitive to BNIs than AOB, and sensitivity was greater to BNIs produced by shoots than those produced by roots. Sensitivity also varied within AOA and AOB cultures and between different BNIs. In general, N. europaea was not a good indicator of BNI inhibition, and findings therefore highlight the limitations of use of a single bioassay strain and suggest the use of a broader range of strains that are more representative of natural soil communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bethany I. Taggert ◽  
Charlie Walker ◽  
Deli Chen ◽  
Uta Wille

AbstractNitrogen (N) fertilisers amended with nitrification inhibitors can increase nitrogen use efficiencies in agricultural systems but the effectiveness of existing commercial inhibitor products, including 3,4-dimethylpyrazole phosphate (DMPP), is strongly influenced by climatic and edaphic factors. With increasing pressure to reduce the environmental impact of large-scale agriculture it is important to develop new nitrogen-stabilising products that can give reliable and consistent results, particularly for warmer climatic conditions. We synthesised a library of 17 compounds featuring a substituted 1,2,3-triazole motif and performed laboratory incubations in two south-eastern Australian soils. In the neutral (pH 7.3) soil, the compounds N002, N013, N016 and N017, which possess short non-polar alkyl or alkynyl substituents at the triazole ring, retained NH4+-N concentrations at 35 °C soil temperature to a better extent (P < 0.001) than DMPP. In the alkaline soil (pH 8.8) N013 performed better with regards to NH4+-N retention (P = 0.004) than DMPP at 35 °C soil temperature. Overall, our data suggest that substituted 1,2,3-triazoles, which can be synthesized with good yields and excellent atom economy through 1,3-dipolar cycloaddition from readily available starting materials, are promising nitrification inhibitors performing similar to, or better than DMPP, particularly at elevated soil temperatures.


Author(s):  
Yu-Pin Lin ◽  
Andrianto Ansari ◽  
Lien-Chieh Cheng ◽  
Chiao-Ming Lin ◽  
Rainer-Ferdinand Wunderlich ◽  
...  

Nitrification inhibitors (NIs) such as dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and allylthiourea (AT) are commonly used to suppress ammonia oxidization at different time scales varying from a few hours to several months. Although the responses of NIs to edaphic and temperature conditions have been studied, the influence of the aforementioned factors on their inhibitory effect remains unknown. In this study, laboratory-scale experiments were conducted to assess the short-term (24 h) influence of eight abiotic and biotic factors on the inhibitory effects of DCD, DMPP, and AT across six cropped and non-cropped soils at two temperature conditions with three covariates of soil texture. Simultaneously, the dominant contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to potential ammonia oxidization (PAO) were distinguished using the specific inhibitor 2 phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Our results revealed that AT demonstrated a considerably greater inhibitory effect (up to 94.9% for an application rate of 75 mg of NI/kg of dry soil) than DCD and DMPP. The inhibitory effect of AT was considerably affected by the relative proportions of silt, sand, and clay in the soil and total PAO. In contrast to previous studies, the inhibitory effects of all three NIs remained largely unaffected by the landcover type and temperature conditions for the incubation period of 24 h. Furthermore, the efficacy of all three tested NIs was not affected by the differential contributions of AOA and AOB to PAO. Collectively, our results suggested a limited influence of temperature on the inhibitory effects of all three NIs but a moderate dependence of AT on the soil texture and PAO. Our findings can enhance the estimation of the inhibitory effect in soil, and pure cultures targeting the AOA and AOB supported ammonia oxidization and, hence, nitrogen dynamics under NI applications.


The Holocene ◽  
2021 ◽  
pp. 095968362110259
Author(s):  
Anna Masseroli ◽  
Giovanni Leonelli ◽  
Umberto Morra di Cella ◽  
Eric P Verrecchia ◽  
David Sebag ◽  
...  

Both biotic and abiotic components, characterizing the mountain treeline ecotone, respond differently to climate variations. This study aims at reconstructing climate-driven changes by analyzing soil evolution in the late Holocene and by assessing the climatic trends for the last centuries and years in a key high-altitude climatic treeline (2515 m a.s.l.) on the SW slope of the Becca di Viou mountain (Aosta Valley Region, Italy). This approach is based on soil science and dendrochronological techniques, together with daily air/soil temperature monitoring of four recent growing seasons. Direct measurements show that the ongoing soil temperatures during the growing season, at the treeline and above, are higher than the predicted reference values for the Alpine treeline. Thus, they do not represent a limiting factor for tree establishment and growth, including at the highest altitudes of the potential treeline (2625 m a.s.l.). Dendrochronological evidences show a marked sensitivity of tree-ring growth to early-summer temperatures. During the recent 10-year period 2006–2015, trees at around 2300 m a.s.l. have grown at a rate that is approximately 1.9 times higher than during the 10-year period 1810–1819, one of the coolest periods of the Little Ice Age. On the other hand, soils show only an incipient response to the ongoing climate warming, likely because of its resilience regarding the changeable environmental conditions and the different factors influencing the soil development. The rising air temperature, and the consequent treeline upward shift, could be the cause of a shift from Regosol to soil with more marked Umbric characteristics, but only for soil profiles located on the N facing slopes. Overall, the results of this integrated approach permitted a quantification of the different responses in abiotic and biotic components through time, emphasizing the influence of local station conditions in responding to the past and ongoing climate change.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 38
Author(s):  
Chi-Jen Tai ◽  
Chiung-Yao Huang ◽  
Atallah F. Ahmed ◽  
Raha S. Orfali ◽  
Walied M. Alarif ◽  
...  

Chemical investigation of a Red Sea Spongia sp. led to the isolation of four new compounds, i.e., 17-dehydroxysponalactone (1), a carboxylic acid, spongiafuranic acid A (2), one hydroxamic acid, spongiafuranohydroxamic acid A (3), and a furanyl trinorsesterpenoid 16-epi-irciformonin G (4), along with three known metabolites (−)-sponalisolide B (5), 18-nor- 3,17-dihydroxy-spongia-3,13(16),14-trien-2-one (6), and cholesta-7-ene-3β,5α-diol-6-one (7). The biosynthetic pathway for the molecular skeleton of 1 and related compounds was postulated for the first time. Anti-inflammatory activity of these metabolites to inhibit superoxide anion generation and elastase release in N-formyl-methionyl-leucyl phenylalanine/cytochalasin B (fMLF/CB)-induced human neutrophil cells and cytotoxicity of these compounds toward three cancer cell lines and one human dermal fibroblast cell line were assayed. Compound 1 was found to significantly reduce the superoxide anion generation and elastase release at a concentration of 10 μM, and compound 5 was also found to display strong inhibitory activity against superoxide anion generation at the same concentration. Due to the noncytotoxic activity and the potent inhibitory effect toward the superoxide anion generation and elastase release, 1 and 5 can be considered to be promising anti-inflammatory agents.


1997 ◽  
Vol 24 (1) ◽  
pp. 52-59
Author(s):  
S. D. Stewart ◽  
K. L. Boweri ◽  
T. P. Mack ◽  
J. H. Edwards

Abstract Three row spacings and two planting dates for peanuts, Arachis hypogaea L., were examined in 1993 and 1994 to determine the influence of the canopy environment on lesser cornstalk borer, Elasmopalpus lignosellus (Zeller) (Lepidoptera: Pyralidae), other arthropods, and alflatoxigenic fungi. Climatically, 1993 and 1994 were disparate years. Decreasing row spacing increased relative leaf area and light interception by the canopy but, compared to difference between planting dates or years, had a relatively small impact on soil temperatures and relative humidity within the canopy. Late planting produced smaller plants, retarded canopy development, and reduced yield in both years, but especially in 1993 when it was hot and dry. The wide row spacing did not yield as well as twin and normal row spacings in either year. Lesser cornstalk borer damage and aflatoxin concentration were higher in the late planting than in the early planting of 1993, but were unaffected by row spacing. Fewer predatory arthropods were caught as row spacing decreased in both beat and pitfall samples, but planting date had variable effects. Prevailing climatic conditions and planting date appeared to be more important in influencing the canopy environment and pest densities than was row spacing.


2008 ◽  
Vol 88 (2) ◽  
pp. 163-174 ◽  
Author(s):  
C F Drury ◽  
X M Yang ◽  
W D Reynolds ◽  
N B McLaughlin

It is well established that nitrous oxide (N2O) and carbon dioxide (CO2) emissions from agricultural land are influenced by the type of crop grown, the form and amount of nitrogen (N) applied, and the soil and climatic conditions under which the crop is grown. Crop rotation adds another dimension that is often overlooked, however, as the crop residue being decomposed and supplying soluble carbon to soil biota is usually from a different crop than the crop that is currently growing. Hence, the objective of this study was to compare the influence of both the crop grown and the residues from the preceding crop on N2O and CO2 emissions from soil. In particular, N2O and CO2 emissions from monoculture cropping of corn, soybean and winter wheat were compared with 2 -yr and 3-yr crop rotations (corn-soybean or corn-soybean-winter wheat). Each phase of the rotation was measured each year. Averaged over three growing seasons (from April to October), annual N2O emissions were about 3.1 to 5.1 times greater in monoculture corn (2.62 kg N ha-1) compared with either monoculture soybean (0.84 kg N ha-1) or monoculture winter wheat (0.51 kg N ha-1). This was due in part to the higher inorganic N levels in the soil resulting from the higher N application rate with corn (170 kg N ha-1) than winter wheat (83 kg N ha-1) or soybean (no N applied). Further, the previous crop also influenced the extent of N2O emissions in the current crop year. When corn followed corn, the average N2O emissions (2.62 kg N ha-1) were about twice as high as when corn followed soybean (1.34 kg N ha-1) and about 60% greater than when corn followed winter wheat (1.64 kg N ha-1). Monoculture winter wheat had about 45% greater CO2 emissions than monoculture corn or 51% greater emissions than monoculture soybean. In the corn phase, CO2 emissions were greater when the previous crop was winter wheat (5.03 t C ha-1) than when it was soybean (4.20 t C ha-1) or corn (3.91 t C ha-1). Hence, N2O and CO2 emissions from agricultural fields are influenced by both the current crop and the previous crop, and this should be accounted for in both estimates and forecasts of the emissions of these important greenhouse gases. Key words: Denitrification, soil respiration, rotation, crop residue


2017 ◽  
Author(s):  
Sebastian Rainer Fiedler ◽  
Jürgen Augustin ◽  
Nicole Wrage-Mönnig ◽  
Gerald Jurasinski ◽  
Bertram Gusovius ◽  
...  

Abstract. Biogas digestate (BD) is increasingly used as organic fertiliser, but has a high potential for NH3 losses. Its proposed injection into soils as a counter-measure has been suggested to promote the generation of N2O, leading to a potential trade-off. Furthermore, the effect on N2 losses after injection of BD into soil has not yet been evaluated. We performed a simulated BD injection experiment in a helium-oxygen atmosphere to examine the influence of soil substrate (loamy sand, clayey silt), water-filled pore space (WFPS; 35, 55, 75 %), temperature (2° C, 15° C) and application rate (0, 160, 320 kg N ha−1) as a proxy for row spacing of injection on the emissions of N2O, N2, and CO2. To determine the potential capacity for these gaseous losses, we incubated under anaerobic conditions by purging with helium for the last 24 h of incubation. N2O and N2 emissions as well as the N2 / (N2O + N2) ratio depended on soil type and increased with WFPS and temperature, indicating a crucial role of soil gas diffusivity for the formation of these gases in agricultural soils. However, the emissions did not increase with the application rate of BD, i.e. a broader spacing of injection slits, probably due to an inhibitory effect of the high NH4+ content of BD. Our results suggest that the risk of N2O and N2 losses even after injection of relatively large amounts of BD seems to be small for dry to wet sandy soils and acceptable when regarding simultaneously reduced NH3 emissions for dry silty soils.


2012 ◽  
Vol 55 (5) ◽  
pp. 415-419 ◽  
Author(s):  
I. Antkowiak ◽  
J. Pytlewski ◽  
A. Purczyńska ◽  
R. Skrzypek

Abstract. This study was carried out on 26 adult water (river) buffaloes (25 females and 1 male) imported in 2006 to an eco-tourism farm in the Wielkopolska province, Poland. During the growing season, animals were kept on a logged pasture covering an area of about 15 ha. The pasture was divided into three approximately equal parts, each with a different facility available for wallowing; i.e. pond, drainage ditch and stream. Behavioural observations were carried out three times in July and August 2007 in approximately 14-d intervals, each time during one day on a different part of the pasture, always between 06.00 and 16.00. The method of registration was instantaneous scan sampling, performed at approximately 60 min intervals. On the days of observations mean daily temperature varied from 20.2 to 20.8 °C. Grazing was the behaviour shown by the highest percentage of animals in the herd (58.6%), followed by rumination (28.2%), lying down (26.5%), wallowing (12.9%) and standing (1.4%). When they had access to a pond or ditch, the proportion of animals wallowing was twice as much compared to stream access (P<0.05). It was concluded that the welfare of the investigated buffaloes was not compromised during the high summer temperatures that can be encountered in Poland. Results also indicate that the highest level of welfare can be reached in this time of year when animals are provided with access to ample facility for wallowing. Under our climatic conditions facilities with still or slowly moving water appeared to be preferred by river buffaloes. However, this study has a limitation which is short period of observation, thus it is possible that a longer and more representative period of observations could change these conclusions.


Sign in / Sign up

Export Citation Format

Share Document