Calibration and assessment of soil tests for estimating fertilizer requirements. I. Statistical models and tests of significance.

Soil Research ◽  
1967 ◽  
Vol 5 (2) ◽  
pp. 275 ◽  
Author(s):  
JD Colwell

The calibration of soil tests requires a statistical model to describe the relationship between yield of crop, fertilizer application rate, and soil test. Yield response to fertilizers can be represented by polynomials both in the natural and square-root scales, and these polynomials can be generalized for a given crop and region, using soil test expressions. The generalization can be done using orthogonal polynomials and simultaneous regression equations that relate the coefficients of the polynomials to the soil test variables. This procedure is necessary because of heterogeneity in the residual sum of squares of regressions fitted to the yield data of several fertilizer field experiments within a region. The set of simultaneous regression equations constitutes a direct calibration of the soil test, since it can be used for the estimation of economic fertilizer requirement. Highly significant calibrations are demonstrated for a phosphorus soil test with wheat and a potassium test with potatoes. A nitrogen test gave only non-significant (P > 0.05) relationships.

1975 ◽  
Vol 15 (72) ◽  
pp. 93
Author(s):  
B Palmer ◽  
VF McClelland ◽  
R Jardine

The relationships between soil tests for 'plant available' phosphate and wheat yield response to applied superphosphate were examined and the extent to which these relationships were modified by other soil measurements was determined. Soil samples and wheat yield data were obtained from experiments conducted in the Victorian wheat belt. The sites were grouped into four relatively uniform classes using soil pH measurement and geographic location. The soil test values differed widely and were accountable for by the soil characteristics measured. However, the overall and within group yield responses to applied superphosphate could not be accounted for in terms of either the soil test value or the associated chemical measurements. By inference, yield response was clearly dependent on factors other than those determining the results of soil tests.


1968 ◽  
Vol 8 (30) ◽  
pp. 52
Author(s):  
JV Mullaly ◽  
JKM Skene ◽  
R Jardine

The predictability of three different measures of wheat yield response to superphosphate from each of four soil test measures of available phosphorus (0-6 inches) was examined, using data from field experiments over the period 1951 to 1965. The associations were studied separately within the three great soil groups that are dominant over the wheatgrowing areas of Victoria. Whichever measure of yield response was considered, soil bicarbonate P test measurement gave the best basis for prediction. However, at most, only 26 per cent of the yield response variability was predictable, and the other three tests were substantially less successful. Under the general conditions considered, where yield response is subject to a variety of uncorrected environmental deficiencies, it is concluded that the soil tests for P investigated in this paper are of doubtful practical value.


1973 ◽  
Vol 81 (2) ◽  
pp. 311-316
Author(s):  
E. W. Bolle-Jones ◽  
F. Sanei

SummaryField experiments were conducted in four provinces of Iran in which sugar-beet yield responses to added nitrogen and phosphorus fertilizers were correlated with soil test values and number of irrigations.Although significant yield responses to fertilizer application were obtained in all four provinces, extremely few significant relationships were established between soil test values and yield response.Average crop yield was favourably influenced by the number of irrigations applied in Fare and Khorasan, by organic carbon status in Esfahan and Khorasan and adversely affected by increased soil conductivity in Esfahan and Khorasan. These results were taken to imply an inadequate number of irrigations in Fars and Khorasan. The high calcium carbonate status found in Fars soil adversely affected the level of average yield.Response to nitrogen fertilizer declined in Fars and Khorasan as the leaf nitrogen exceeded 3·15 and 4·0% respectively. Response to phosphate fertilizer declined in West Azerbaijan and Khorasan when leaf phosphorus exceeded 0·4%.


2020 ◽  
Vol 12 (2) ◽  
pp. 15
Author(s):  
Adebusoye O. Onanuga ◽  
Roy Weasel Fat

An experiment was conducted in the Standoff Alberta community garden over the 2019 summer time. Fallow and unfallow soils of Standoff community were used for this experiment. The major nutrients Nitrogen (N) was deficient and Phosphorus (P) was low in the unfallow soil. Furthermore, fallow soil N nutrient was low and optimum for P. Soil potassium was in excess for both soils. The pH of the soils were 7.4 and 7.5 in fallow soil and unfallow soil, respectively. One level of fertilizer application rate was applied to fallow and unfallow soils. Corn, carrots and peas were planted to unfallows soil while potatoes plants were cultivated to fallow soil. Standard agronomic practices were followed to establish this experiment. The six plants were taken per square meter bi-weekly in all the locations randomly across the field in zigzag pattern for growth parameters while six plants for corn, 2 plants for peas, carrots and potatoes per square meter were harvested for yield parameters. The means of growth and yield data collected from each location were subjected to a simple t-test so as to compare the performance of crops planted in each location. The results obtained showed that there were differences of growth in different locations across the field. Moreover, heterogeneous nature of the soil in different locations influenced soil nutrients ability to favour yield of corn, carrots, peas and potatoes. However, in all the 6 locations on the field, peas pod numbers at week 4, potatoes tuber number at week 5, peas dry weight at week 4 and carrot dry weight at week 5 were insignificant, all look the same. These results suggest that application of fertilizers and shortage of water were not evenly distributed which lead to uneven yield in different locations across the field.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1161
Author(s):  
Roland Gerhards ◽  
Fructueuse N. Ouidoh ◽  
André Adjogboto ◽  
Vodéa Armand Pascal Avohou ◽  
Berteulot Latus Sètondji Dossounon ◽  
...  

Although clear evidence for benefits in crop production is partly missing, several natural compounds and microorganisms have been introduced to the market as biostimulants. They are supposed to enhance nutrient efficiency and availability in the rhizosphere, reduce abiotic stress, and improve crop quality parameters. Biostimulants often derive from natural compounds, such as microorganisms, algae, and plant extracts. In this study, the commercial plant extract-based biostimulant ComCat® was tested in two field experiments with maize in the communities of Banikoara and Matéri in Northern Benin and six pot experiments (four with maize and two with winter barley) at the University of Hohenheim in Germany. Maize was grown under nutrient deficiency, drought, and weed competition, and winter barley was stressed by the herbicide Luximo (cinmethylin). ComCat® was applied at half, full, and double the recommended field rate (50, 100, and 200 g ha−1) on the stressed and unstressed control plants as leaf or seed treatment. The experiments were conducted in randomized complete block designs with four replications. The above-ground biomass and yield data of one experiment in Benin were collected. The biostimulant did not promote maize and winter barley biomass production of the unstressed plants. When exposed to stress, ComCat@ resulted only in one out of eight experiments in higher barley biomass compared to the stressed treatment without ComCat® application. There was a reduced phytotoxic effect of cinmethylin after seed treatment with ComCat®. Crop response to ComCat® was independent of the application rate. Basic and applied studies are needed to investigate the response of crops to biostimulants and their mechanisms of action in the plants before they should be used in practical farming.


2002 ◽  
Vol 42 (2) ◽  
pp. 149 ◽  
Author(s):  
M. D. A. Bolland ◽  
W. J. Cox ◽  
B. J. Codling

Dairy and beef pastures in the high (>800 mm annual average) rainfall areas of south-western Australia, based on subterranean clover (Trifolium subterraneum) and annual ryegrass (Lolium rigidum), grow on acidic to neutral deep (>40 cm) sands, up to 40 cm sand over loam or clay, or where loam or clay occur at the surface. Potassium deficiency is common, particularly for the sandy soils, requiring regular applications of fertiliser potassium for profitable pasture production. A large study was undertaken to assess 6 soil-test procedures, and tissue testing of dried herbage, as predictors of when fertiliser potassium was required for these pastures. The 100 field experiments, each conducted for 1 year, measured dried-herbage production separately for clover and ryegrass in response to applied fertiliser potassium (potassium chloride). Significant (P<0.05) increases in yield to applied potassium (yield response) were obtained in 42 experiments for clover and 6 experiments for ryegrass, indicating that grass roots were more able to access potassium from the soil than clover roots. When percentage of the maximum (relative) yield was related to soil-test potassium values for the top 10 cm of soil, the best relationships were obtained for the exchangeable (1 mol/L NH4Cl) and Colwell (0.5 mol/L NaHCO3-extracted) soil-test procedures for potassium. Both procedures accounted for about 42% of the variation for clover, 15% for ryegrass, and 32% for clover + grass. The Colwell procedure for the top 10 cm of soil is now the standard soil-test method for potassium used in Western Australia. No increases in clover yields to applied potassium were obtained for Colwell potassium at >100 mg/kg soil. There was always a clover-yield increase to applied potassium for Colwell potassium at <30 mg/kg soil. Corresponding potassium concentrations for ryegrass were >50 and <30 mg/kg soil. At potassium concentrations 30–100 mg/kg soil for clover and 30–50 mg/kg soil for ryegrass, the Colwell procedure did not reliably predict yield response, because from nil to large yield responses to applied potassium occurred. The Colwell procedure appears to extract the most labile potassium in the soil, including soluble potassium in soil solution and potassium balancing negative charge sites on soil constituents. In some soils, Colwell potassium was low indicating deficiency, yet plant roots may have accessed potassum deeper in the soil profile. Where the Colwell procedure does not reliably predict soil potassium status, tissue testing may help. The relationship between relative yield and tissue-test potassium varied markedly for different harvests in each year of the experiments, and for different experiments. For clover, the concentration of potassium in dried herbage that was related to 90% of the maximum, potassium non-limiting yield (critical potassium) was at the concentration of about 15 g/kg dried herbage for plants up to 8 weeks old, and at <10 g/kg dried herbage for plants older than 10–12 weeks. For ryegrass, there were insufficient data to provide reliable estimates of critical potassium.


Soil Research ◽  
1985 ◽  
Vol 23 (2) ◽  
pp. 167 ◽  
Author(s):  
ICR Holford ◽  
JM Morgan ◽  
J Bradley ◽  
BR Cullis

In a study using data from 57 wheat field experiments on the central-western slopes of New South Wales, eight soil phosphate tests (Bray,, Bray,, alkaline fluoride, Mehlich, Truog, lactate, Olsen and Colwell) were evaluated and calibrated in terms of responsiveness (�) and response curvature (C) parameters derived from the Mitscherlich equation. The results showed that, regardless of how well correlated a soil test is with yield responsiveness, it cannot give a satisfactory estimate of fertilizer requirement unless yield response curvature is also taken into account. The tendency of soil test values, especially of the Colwell test, to be negatively related to response curvature, and hence inversely related to fertilizer effectiveness, compounded the problem of directly relating soil test values to fertilizer requirement. The best test (lactate) accounted for only 28% of the variance in fertilizer requirement, compared with 50% of the variance in responsiveness, and the worst test (Colwell) was completely unrelated to fertilizer requirements. When fertilizer requirement was estimated from the lactate test value and the actual response curvature for each experiment, 68% of the variance (from the actual fertilizer requirement) was accounted for. Thirteen experiments were subject to drier conditions than the others, and these were less responsive and had lower fertilizer requirements relative to soil test values. In relation to yield responsiveness, the Colwell test was most sensitive (P < 0.001) to dry conditions, while the two best tests (lactate and Bray,) were the least sensitive (P > 0.05). The results demonstrated the superiority of acidic anionic extractants over alkaline bicarbonate extractants on moderately acid to alkaline wheat-growing soils.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 195 ◽  
Author(s):  
Timothy Boring ◽  
Kurt Thelen ◽  
James Board ◽  
Jason De Bruin ◽  
Chad Lee ◽  
...  

To determine if current university fertilizer rate and timing recommendations pose a limitation to high-yield corn (Zea mays subsp. mays) and soybean (Glycine max) production, this study compared annual Phosphorous (P) and Potassium (K) fertilizer applications to biennial fertilizer applications, applied at 1× and 2× recommended rates in corn–soybean rotations located in Minnesota (MN), Iowa (IA), Michigan (MI), Arkansas (AR), and Louisiana (LA). At locations with either soil test P or K in the sub-optimal range, corn grain yield was significantly increased with fertilizer application at five of sixteen site years, while soybean seed yield was significantly increased with fertilizer application at one of sixteen site years. At locations with both soil test P and K at optimal or greater levels, corn grain yield was significantly increased at three of thirteen site years and soybean seed yield significantly increased at one of fourteen site years when fertilizer was applied. Site soil test values were generally inversely related to the likelihood of a yield response from fertilizer application, which is consistent with yield response frequencies outlined in state fertilizer recommendations. Soybean yields were similar regardless if fertilizer was applied in the year of crop production or before the preceding corn crop. Based on the results of this work across the US and various yield potentials, it was confirmed that the practice of applying P and K fertilizers at recommended rates biennially prior to first year corn production in a corn–soybean rotation does not appear to be a yield limiting factor in modern, high management production systems.


2019 ◽  
Vol 11 (4) ◽  
pp. 1165 ◽  
Author(s):  
Haixia Wu ◽  
Yan Ge

This paper takes 516 households who planted wheat in Heyang County, Shaanxi Province in 2018, as samples to construct three policy environments: Technological guidance for planting, subsidies for organic fertilizer application, and agricultural tailwater discharge standards. The experimental choice method was used to empirically analyze policy preferences during the process of fertilizer reduction. The results indicate that households show different preferences for the three policy settings: The fertilizer application rate is reduced by 6.98% if providing full technological guidance for farmers throughout the wheat planting process and is reduced by 5.18% under the background of providing appropriate organic fertilizer subsidies. The agricultural tailwater discharge standards have the least impact on the reducing level of chemical fertilizer application, with decreasing amounts of only 1.85% and 0.77% under the second-level and the first-level agricultural tailwater discharge standards, respectively. These results indicate that households in Heyang County, Shaanxi Province, demonstrate a low willingness to accept the agricultural tailwater discharge standards in order to cut down on the amount of chemical fertilizer application and the agricultural non-point source pollution. Therefore, compared with a compounded annual growth rate (CAGR) of 1% of fertilizer usage nationwide according to the Chinese Ministry of Agriculture, given the current planting environment and policies design, providing comprehensive technological guidance as well as price subsidies for the organic fertilizer can significantly and robustly reduce the excessive application of fertilizer in Heyang County, Shaanxi Province, under the best scenario, thereby further alleviating agricultural non-point source pollution.


Sign in / Sign up

Export Citation Format

Share Document