Genesis of podzols on coastal dunes in southern Queensland .III. The role of aluminum organic complexes in profile development

Soil Research ◽  
1992 ◽  
Vol 30 (5) ◽  
pp. 645 ◽  
Author(s):  
JO Skjemstad

Organic matter was extracted sequentially with 0.1 M HC1, 0.5 M HCl and 0.5 M NaOH from three soil samples consisting of the dark brown organic nodules and matrix material from the Bhs2 horizon and the untreated Bhs3 horizon material of a freely drained podzol from Cooloola. The NaOH extract was further divided into fulvic and humic acid. After extracts were separated on G-50 Sephadex gel, titration data demonstrated that carboxyl groups in the collected fractions ranged from 8.8% to 61.3% of the total carbon although some overestimate of the carboxyl content may result from the chromic acid method used. Fractions excluded by the gel made up >95% of each extract and the first fraction collected in each case was the lowest in carboxyl content. These fractions from the 0-1 M HC1 extracts were generally low in carboxyl content (8.8%-24.9%) as were those from the humic acids (10.7-11.2%) although the major remaining humic acid fractions were extremely high (58.6-61.3510). The 0.5 M HCl and fulvic acid extracts appeared similar in chemical properties with carboxyl content of the separated fractions ranging from 16.4 to 44.0%. Molar absorptivities were in the order 0.1 M HCl < 0.5 M HC1< fulvic acid < humic acid. The pKa values of the acids were found to increase in the order humic acid < fulvic acid = 0.5 M HCl < 0.1 M HCl as well as in the order Bhs2 (dark brown nodules) < Bhs2 (yellow brown bulk) < Bhs3 for each fraction. Ease of flocculation of the extracts by aluminium counter ions decreased in the order humic acid > fulvic acid > 0.5 M HCl > 0.1 M HCl. It was demonstrated that other organic extracts low in aluminium content could be used to remobilize flocculated humic acid through redistribution of the aluminium bound to the precipitated phase into the solution phase. From these and other data, a hypothesis explaining the specific manner in which organic matter is arrested during podzolization is proposed. Some major factors appear to be (a) the pH of the horizon, (6) pKa and aromaticity of the organic acids and (c) availability of aluminium to the organic fractions. Remobilization of precipitated organic matter requires the presence of organic acids of low aluminium content in the percolating soil solution. This hypothesis adequately describes the process by which distinct Bh, Bhs and Bs horizons are formed and evolve during profile genesis.

1996 ◽  
Vol 34 (9) ◽  
pp. 157-164 ◽  
Author(s):  
Kim C.-H. ◽  
M. Hosomi ◽  
A. Murakami ◽  
M. Okada

Effects of clay on fouling due to organic substances and clay were evaluated by model fouling materials and kaolin. Model fouling materials selected were protein, polysaccharide, fulvic acid, humic acid and algogenic matter (EOM:ectracellular organic matter, microbial decomposition products) and kaolin was selected as the clay material. Polysulfone membrane (MWCO(Molecular Weight Cut-Off) 10,000, 50,000 and 200,000) was used as an ultrafiltration membrane. In particular, the flux measurement of solutions containing algogenic matter used an ultrafiltration membrane of MWCO 50,000. The flux of protein and polysaccharide with coexistence of kaolin increased in the case of the ratio of MW/MWCO being greater than one, but did not increase in the case of the MW/MWCO ratio being below one. In contrast, the flux of fulvic acid and humic acid with coextence of kaolin decreased regardless of the ratio of MW/MWCO. The addition of dispersion agent and coagulant in the organic substances and kaolin mixture solution changed the size distribution of kaolin, and resulted in a change of the flux. EOM and microbial decomposition products decreased with the increase of the fraction of organic matter having molecular weight more than MWCO of membrane. The flux of the algogenic organic matter with coexistence of kaolin decreased with the increase of the amount of kaolin. It was suggested that the decline of the flux with coexistence of kaolin was due to the change of the resistance of the kaolin cake layer corresponding to the change in kaolin size distribution with charge.


1980 ◽  
Vol 60 (2) ◽  
pp. 219-229 ◽  
Author(s):  
L. E. LOWE

Humus fraction distribution in a wide range of horizon samples was examined by measuring carbon content in humic acid (Ch), in fulvic acid (Cf) and in the strongly colored polyphenolic component of the fulvic acid fraction (Ca). Fraction distribution was described by the ratios Ch/Cf and Ca/Cf. It was concluded that humus fraction ratios were related to horizon types as used in the Canadian System of Soil Classification, and were effective in discriminating between certain horizon types, particularly between Luvisolic Bt and Podzolic Bf. The results also suggested that humus fraction ratios may be effective in separating distinct sub-populations within Ah horizons and Bf horizons in general, based on qualitative differences in organic matter present. Aspects of the role of humus fractions in soil genesis are discussed.


2011 ◽  
Vol 63 (10) ◽  
pp. 2427-2433 ◽  
Author(s):  
R. H. Peiris ◽  
H. Budman ◽  
C. Moresoli ◽  
R. L. Legge

Identifying the extent of humic acid (HA)-like and fulvic acid (FA)-like natural organic matter (NOM) present in natural water is important to assess disinfection by-product formation and fouling potential during drinking water treatment applications. However, the unique fluorescence properties related to HA-like NOM is masked by the fluorescence signals of the more abundant FA-like NOM. For this reason, it is not possible to accurately characterize HA-like and FA-like NOM components in a single water sample using direct fluorescence EEM analysis. A relatively simple approach is described here that demonstrates the feasibility of using a fluorescence excitation-emission matrix (EEM) approach for identifying HA-like and FA-like NOM fractions in water when used in combination with a series of pH adjustments and filtration steps. It is demonstrated that the fluorescence EEMs of HA-like and FA-like NOM fractions from the river water sample possessed different spectral properties. Fractionation of HA-like and FA-like NOM prior to fluorescence analysis is therefore proposed as a more reasonable approach.


1967 ◽  
Vol 47 (3) ◽  
pp. 245-250 ◽  
Author(s):  
M. Schnitzer

Twenty organic-soil samples of widely differing degrees of decomposition were extracted with 0.5 N NaOH solution under N2. Amounts of humic and of fulvic acids in the acidified extracts did not correlate significantly with pyrophosphate solubilities. This was thought to be due to interference in the separation scheme by relatively large amounts of ash constituents in the extracts. Since the "classical" fractionation of soil organic matter appears to involve essentially the "salting out" of higher molecular-weight humic from lower molecular-weight fulvic acids, an excessively high salt concentration during the separation should be avoided.To lower the concentration of inorganic constituents in the extracts, the samples were first pretreated with dilute HCl–HF solution and then extracted with 0.1 N NaOH rather than with 0.5 N NaOH. Under these conditions, amounts of fulvic acids in the acidified extracts showed a significant positive correlation (r = 0.52) with pyrophosphate solubilities of untreated extracts, whereas amounts of humic acids in the extracts exhibited a highly negative correlation (r = −0.57) with pyrophosphate solubilities. In the soils examined, increased humification was associated with increases in fulvic-acid but decreases in humic-acid concentrations.From the results of this and of earlier investigations done in this laboratory it appeared that the main mechanism governing humification in these soils was oxidative degradation, resulting ultimately in the formation of fulvic from humic acid.


2021 ◽  
Author(s):  
Euis Nurul Hidayah ◽  
Okik Hendriyanto Cahyonugroho ◽  
Elita Nurfitriyani Sulistyo ◽  
Nieke Karnangingroem

Abstract Implementation microalgae has been considered for enhancing effluent wastewater quality. However, algae can cause environmental issues due to algae released extracellular organic matter, algal organic matter, instead of bacteria-derived organic matter in the biological process. The objectives of this study are to investigate the characteristics of dissolved effluent organic matter as algal-derived organic and bacteria-derived organic during the oxidation ditch process. Experiments were conducted in the oxidation ditch without algae, with Spirulina platensis and Chlorella vulgaris. The results showed dissolved effluent organic matter increased into higher dissolved organic carbon, more aromatic and hydrophobic than that before treatment. Fluorescence spectroscopy identified two component, namely aromatic protein-like at excitation/emission 230/345 nm and soluble microbial products-like at 320/345 nm after treatment, instead of fulvic acid-like at 230/420 nm and humic acid-like at 320/420 nm in raw wastewater. Fractionation of dissolved organic fluorescence based on average molecular weight cut-offs (MWCOs) has obtained that fractions aromatic protein-like, fulvic acid-like, humic acid-like, and soluble microbial products-like has respectively a high MWCOs 50,000 Da, a high to low MWCOs <1650 Da, medium MWCOs 1650 Da to low MWCOs. Biological oxidation ditch under symbiosis algal-bacteria generated humic acid-like and fulvic acid-like with a higher MWCOs than oxidation without algal. The quality and quantity of dissolved effluent organic matter in oxidation ditch algal reactor has been significant affected by algal-bacteria symbiotic.


2015 ◽  
Vol 39 (4) ◽  
pp. 1068-1078 ◽  
Author(s):  
José Alberto Ferreira Cardoso ◽  
Augusto Miguel Nascimento Lima ◽  
Tony Jarbas Ferreira Cunha ◽  
Marcos Sales Rodrigues ◽  
Luis Carlos Hernani ◽  
...  

Improper land use has lead to deterioration and depletion of natural resources, as well as a significant decline in agricultural production, due to decreased soil quality. Removal of native vegetation to make way for agricultural crops, often managed inadequately, results in soil disruption, decreased nutrient availability, and decomposition of soil organic matter, making sustainable agricultural production unviable. Thus, the aim of the present study was to evaluate the impact of growing irrigated mango (over a 20 year period) on the organic carbon (OC) stocks and on the fractions of soil organic matter (SOM) in relation to the native caatinga (xeric shrubland) vegetation in the Lower São Francisco Valley region, Brazil. The study was carried out on the Boa Esperança Farm located in Petrolina, Pernambuco, Brazil. In areas under irrigated mango and native caatinga, soil samples were collected at the 0-10 and 10-20 cm depths. After preparing the soil samples, we determined the OC stocks, carbon of humic substances (fulvic acid fractions, humic acid fractions, and humin fractions), and the light and heavy SOM fractions. Growing irrigated mango resulted in higher OC stocks; higher C stocks in the fulvic acid, humic acid, and humin fractions; and higher C stocks in the heavy and light SOM fraction in comparison to nativecaatinga, especially in the uppermost soil layer.


10.5219/1131 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 553-561
Author(s):  
Rabab Maraei ◽  
Noha Eliwa ◽  
Amina Aly

The experiment was conducted during two successive seasons 2016 and 2017 on sweet pepper plants to study the effect of foliar application of some natural extracts (fulvic acid at 2, 4 and 6% or algae at 1, 2 and 4 g.L-1) were applied three times along each season (after 2, 4 and 6 weeks of planting). The influence was evaluated through the response of vegetative growth, and some physical and chemical characteristics of sweet pepper fruits. The results obtained showed that the algae extract at 1 g.L-1 in most cases was better than the other spray treatments investigated to improve most fruit characteristics (length, diameter and yield of fruits), vegetative growth, and chemical properties followed by 6% fulvic acid. With regard to organic acids, malic and citric acids are the main organic acids found in sweet pepper. Malic, succinic and glutaric acids were higher in 1 g.L-1 algae extract treatment, but the concentration of citric acid was higher in 6% fulvic acid treatment. Therefore, algae extract and fulvic acid could be safely recommended as a natural biostimulants application for improving most desirable characteristics of sweet pepper grown under the same experimental condition.


Author(s):  
Jianwei Liu ◽  
Mengfei Zhao ◽  
Cui Duan ◽  
Peng Yue ◽  
Tinggang Li

Abstract The widespread implementation of municipal wastewater treatment and reuse must first ensure the safety of reused wastewater. The effluent of the municipal wastewater treatment plant contains a large amount of dissolved organic matter (DOM), which adversely affects the reuse of wastewater. In this study, the ultrafiltration (UF) + reverse osmosis (RO) process was used to treat the effluent from wastewater treatment plants. The relationship between the removal performance, membrane fouling of the UF + RO process, and DOM characteristics of influent were studied. The results show that DOM can be removed effectively by UF + RO process. The UF mainly removes DOM with a molecular weight greater than 10 kDa, while RO has a significant removal effect on low-molecular DOM, which mainly cause UF and RO membrane fouling. The UF + RO process has a significant removal rate on fulvic acid, humic acid, tyrosine, and tryptophan, and the order is humic acid &gt; fulvic acid &gt; tyrosine &gt; tryptophan. Fulvic acid contributed the most to the UF membrane fouling, while fulvic acid and protein-like proteins contributed mainly to the RO membrane fouling.


1969 ◽  
Vol 100 (2) ◽  
pp. 101-122
Author(s):  
Ian C. Pagán-Roig ◽  
Joaquín A. Chong ◽  
José A. Dumas ◽  
Consuelo Estévez de Jensen

Soil fertility and organic matter have been hindered due to unsustainable agricultural practices. There is a need to develop and better understand the effect of combined organic amendments that have the potential to increase soil fertility and agricultural system sustainability. Compost incorporations, the use of coordinated fallows and other biological amendments are alternatives to better the soil and increase crop yield. Information is scarce about the effect of combined organic amendments over soil chemical properties and their impact on vegetable production. The objective of the present study was to assess the effect of a combination of organic amendments we termed soil treatment management cycles (STMC) on soil chemical properties and eggplant yield in a San Antón soil. The STMC amendments consisted of incorporating organic matter from coffee pulp compost, planting and incorporation of a mixture of four green manure species, adding a mycorrhizae culture to the soil as well as compost tea. The different STMC were: control, no STMC (CL0); one STMC (CL1); two consecutive STMC (CL2); and three consecutive STMC (CL3). Results showed that CL1 was enough to significantly increase organic matter, P, K and S content in the soil compared with the non-amended soil. The concentration of Ca was significantly increased by three (CL3), and that of Mg by three (CL3) and two (CL2) STMC, compared to the other treatments. All treatments significantly changed soil pH, buffering it toward neutrality with increasing cycles when compared with pH 7.9 of no STMC control soils. Treatments CL1, CL2 and CL3 increased humic acid content 2.8, 3.8 and 5.9 times, respectively, when compared with CL0. Humic acids, extracted from unamended soils exhibited more condensation and more aromaticity when compared with those of amended soils. Nevertheless, the humic acids of amended soils showed high levels of polymerization. The enhancement in soil properties promoted by STMC resulted in an increase in eggplant fruit yield and biomass production.


Sign in / Sign up

Export Citation Format

Share Document