Irrigation and sodicity

Soil Research ◽  
1993 ◽  
Vol 31 (6) ◽  
pp. 821 ◽  
Author(s):  
P Rengasamy ◽  
KA Olsson

The productivity of irrigated agriculture in Australia is low for most crops and one important factor is the physical and chemical constraints caused by sodicity in the rootzone. Over 80% of the irrigated soils are sodic and have degraded structure limiting water and gas transport and root growth. Irrigation, without appropriate drainage, leads to the buildup of salts in soil solutions with increased sodium adsorption ratio (SAR) and can develop perched watertables due to a very low leaching fraction of the soil layers exacerbated by sodicity. Therefore, irrigation management in Australia is closely linked with the management of soil sodicity.The inevitable consequence of continued irrigation of crops and pastures with saline-sodic water without careful management is the further sodification of soil layers and concentration of salt in the rootzone. This will increase the possibility of dissolving toxic elements from soil minerals. The yields of crops can be far below the potential yields determined by climate. The cost of continued use of amendments and fertilizers to maintain normal yields will increase under saline-sodic irrigation. Most of the irrigated soils in Australia need reclamation of sodicity of soil layers at least in the rootzone. The management of these sodic soils involves the application of gypsum, suitable tillage and the maintenance of structure by the buildup of organic matter and biological activity aver time. Then artificial drainage, an essential component of the management of irrigated sodic soils, is possible. By following these soil management practices, irrigated agriculture in Australia will become sustainable with increased yields and high economic returns.

Soil Research ◽  
1993 ◽  
Vol 31 (6) ◽  
pp. 869 ◽  
Author(s):  
GW Ford ◽  
JJ Martin ◽  
P Rengasamy ◽  
SC Boucher ◽  
A Ellington

This paper gives a broad overview of the distribution and agricultural importance of sodic soils in Victoria. Sodic soils are estimated to occupy at least 13.4 Mha, representing at least 73% of Victoria's agricultural land. Most of this land is used for dryland farming; about 85% of the cropped land and 66% of the land sown to dryland pastures occurs on sodic soils. The largest sodicity class is 'alkaline sodic', dominated by a diverse range of soils (red duplex, yellow duplex, calcareous earths and self-mulching cracking clays). Alkaline sodic soils comprise half of the total agricultural land area, or about 24% of the area of land currently used for dryland cropping and 21% of the land under sown pasture. Land degradation problems are recognized as affecting most agricultural land in Victoria, and to be substantially limiting its productivity. The nature, extent and severity of the various forms of land degradation are a consequence of both intrinsic soil properties and of management practices. There is an urgent need to improve current farming practices to prevent further deterioration of the soil resource. Existing knowledge of the behaviour of sodic soils under both dryland and irrigated agriculture is reviewed. It is concluded that substantial gains in productivity are possible, but will require effective collaboration between soil scientists, agronomists, and land managers. Collation and integration of current knowledge on the properties and management of sodic soils in Victoria, and the acquisition of additional relevant information by targeted long-term research is required. Key issues for future research are identified.


Author(s):  
Erol H. Cakmak

Irrigated agriculture in Turkey currently consumes 75 percent of the total water consumption, which corresponds to about 30 percent of the renewable water supply. Unfavorable future global climate and economic conditions will increase the stress in the water sector. The operation and maintenance (O&M) of almost all large surface irrigation schemes developed by the state has been transferred to irrigation associations governed by the farmers. The purpose of this paper is to provide an overview of irrigation management practices and an evaluation of irrigation water pricing after the transfer using price data at the association level since 1999. Results indicate that both irrigation water charges and collection rates increased following the transfer. However, the recuperation of investment costs for irrigation development from the users has remained minimal. The price of the irrigation water continued to be on per hectare basis, and farmers using pumping water face 2.5 times higher water charge per hectare then the gravity water users. The uptake of more efficient water application technology accompanied by pricing mechanisms reflecting scarcity value of water will certainly ease the adjustment burden of the irrigation sector in the future.


Author(s):  
Erol H. Cakmak

Irrigated agriculture in Turkey currently consumes 75 percent of the total water consumption, which corresponds to about 30 percent of the renewable water supply. Unfavorable future global climate and economic conditions will increase the stress in the water sector. The operation and maintenance (O&M) of almost all large surface irrigation schemes developed by the state has been transferred to irrigation associations governed by the farmers. The purpose of this paper is to provide an overview of irrigation management practices and an evaluation of irrigation water pricing after the transfer using price data at the association level since 1999. Results indicate that both irrigation water charges and collection rates increased following the transfer. However, the recuperation of investment costs for irrigation development from the users has remained minimal. The price of the irrigation water continued to be on per hectare basis, and farmers using pumping water face 2.5 times higher water charge per hectare then the gravity water users. The uptake of more efficient water application technology accompanied by pricing mechanisms reflecting scarcity value of water will certainly ease the adjustment burden of the irrigation sector in the future.


Agriculture ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 76 ◽  
Author(s):  
Giulia Marino ◽  
Daniele Zaccaria ◽  
Richard L. Snyder ◽  
Octavio Lagos ◽  
Bruce D. Lampinen ◽  
...  

In California, a significant percentage of the pistachio acreage is in the San Joaquin Valley on saline and saline-sodic soils. However, irrigation management practices in commercial pistachio production are based on water-use information developed nearly two decades ago from experiments conducted in non-saline orchards sprinkler-irrigated with good quality water. No information is currently available that quantify the effect of salinity or combined salinity and sodicity on water use of micro-irrigated pistachio orchards, even though such information would help growers schedule irrigations and control soil salinity through leaching. To fill this gap, a field research study was conducted in 2016 and 2017 to measure the actual evapotranspiration (ETa) from commercial pistachio orchards grown on non-saline and saline-sodic soils in the southern portion of the San Joaquin Valley of California. The study aimed at investigating the functional relations between soil salinity/sodicity and tree performance, and understanding the mechanisms regulating water-use reduction under saline and saline-sodic conditions. Pistachio ETa was measured with the residual of energy balance method using a combination of surface renewal and eddy covariance equipment. Saline and saline-sodic conditions in the soil adversely affected tree performance with different intensity. The analysis of field data showed that ETa, light interception by the tree canopy, and nut yield were highly and linearly related (r2 > 0.9). Moving from non-saline to saline and saline-sodic conditions, the canopy light interception decreased from 75% (non-saline) to around 50% (saline) and 30% (saline-sodic), and ETa decreased by 32% to 46% relative to the non-saline orchard. In saline-sodic soils, the nut yield resulted around 50% lower than that of non-saline orchard. A statistical analysis performed on the correlations between soil physical-chemical parameters and selected tree performance indicators (ETa, light interception, and nut yield) revealed that the sodium adsorption ratio (SAR) adversely affected tree performance more than the soil electrical conductivity (ECe). Results suggest that secondary effects of sodicity (i.e., degradation of soil structure, possibly leading to poor soil aeration and root hypoxia) might have had a stronger impact on pistachio performance than did salinity in the long term. The information presented in this paper can help pistachio growers and farm managers better tailor irrigation water allocation and management to site-specific orchard conditions (e.g., canopy features and soil-water salinity/sodicity), and potentially lead to water and energy savings through improved irrigation management practices.


2020 ◽  
Author(s):  
Timothy Foster ◽  
Roshan Adhikari ◽  
Subash Adhikari ◽  
Anton Urfels ◽  
Timothy Krupnik

<p>In many parts of South Asia, electricity for groundwater pumping has been directly or indirectly subsidised by governments to support intensification of agriculture. In contrast, farmers in large portions of the Eastern Indo-Gangetic Plains (EIGP) remain largely dependent on unsubsidised diesel or petrol power for irrigation pumping. Combined with a lack of comprehensive aquifer mapping, high energy costs of pumping limit the ability of farmers to utilise available groundwater resources. This increases exposure to farm production risks, in particular drought and precipitation variability.</p><p>To date, research to address these challenges has largely focused on efforts to enhance rural electrification or introduce renewable energy-based pumping systems that remain out of reach of many poor smallholders. However, there has been comparatively little focus on understanding opportunities to improve the cost-effectiveness and performance of the thousands of existing diesel-pump irrigation systems already in use in the EIGP. Here, we present findings from a recent survey of over 432 farmer households in the mid-western Terai region of Nepal – an important area of diesel-pump irrigation in the EIGP. Our survey provides information about key socio-economic, technological and behavioral aspects of diesel pump irrigation systems currently in operation, along with quantitative evidence about their impacts on agricultural productivity and profitability.</p><p>Survey results indicate that groundwater irrigation costs vary significantly between individual farmers. Farmers faced with higher costs of groundwater access irrigate their crops less frequently, which in turn results in lower crop yields and reduced overall farm profitability. Our data indicate that pumpset fuel efficiency may be a key driver of variability in irrigation costs, with large horsepower (>5 HP) Indian-made pumpsets appearing to have significantly higher fuel consumption rates (1.10 litre/hour and $18,000) and investments costs than alternative smaller horsepower (<5 HP) Chinese-made pumpsets (0.76 litre/hr and $30,000). Despite this, the majority of farmers continue to favour Indian pumpsets due to their higher reliability and well-established supply chains. Variability in access costs is also related to differences in capacity of farmers to invest in their own pumping systems. Pumpset rental rates in the region increase irrigation costs by a factor of 3-4 relative to the cost of fuel alone. Furthermore, rental rates typically are structured on a per-hourly basis, further exacerbating access costs for farmers with low yielding wells or whose irrigation management practices are less efficient.</p><p>Our findings highlight that opportunities exist to reduce costs of groundwater use in existing diesel irrigation systems through improved access to more energy efficient pumping systems. This would have positive near-term impacts on agricultural productivity and rural livelihoods, in particular helping farmers to more effectively buffer crops against monsoonal variability. Such near-term improvements in diesel pump irrigation systems would also play an important role in supporting agriculture in the EIGP to transition to more sustainable and clean sources of energy for irrigation pumping. However, efforts to enhance irrigation access must also occur alongside improvements to aquifer monitoring and governance of extraction, in order to minimise risks of future depletion such as observed in other parts of the IGP.</p>


EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
George Hochmuth ◽  
Laurie Trenholm ◽  
Don Rainey ◽  
Esen Momol ◽  
Claire Lewis ◽  
...  

Proper irrigation management is critical to conserve and protect water resources and to properly manage nutrients in the home landscape. How lawns and landscapes are irrigated directly impacts the natural environment, so landscape maintenance professionals and homeowners must adopt environmentally-friendly approaches to irrigation management. After selecting the right plant for the right place, water is the next critical factor to establish and maintain a healthy lawn and landscape. Fertilization is another important component of lawn and landscape maintenance, and irrigation must be applied correctly, especially following fertilization, to minimize potential nutrient losses. This publication supplements other UF/IFAS Extension publications that also include information on the role of soil and the root zone in irrigation management. This publication is designed to help UF/IFAS Extension county agents prepare materials to directly address nutrient losses from lawns and landscapes caused by inadequate irrigation management practices. This 6-page fact sheet was written by George Hochmuth, Laurie Trenholm, Don Rainey, Esen Momol, Claire Lewis, and Brian Niemann, and published by the UF Department of Soil and Water Science, October 2013. http://edis.ifas.ufl.edu/ss586


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
DHANANJAI SINGH ◽  
A.K. PATEL ◽  
S.K. SINGH ◽  
M.S. BAGHEL

Krishi Vigyan Kendra laid down Front Line Demonstration in the year 2010-11 and 2011-12 introducing new, high yielding and scented variety “Pusa Sugandha-3” and applying scientific practices in their cultivation. The FLDs were carried out in village “Dainiha” of Sidhi district in supervision of KVK scientist. The productivity and economic returns of paddy in improved technologies were calculated and compared with the corresponding farmer's practices (local check). Improved practices recorded higher yield as compared to farmer's practices. The improved technology recorded higher yield of 30.83 q/ha and 32.65 q/ha in the year 2010-11 and 2011-12, respectively than 22.13 and 24.21 q/ha. The average yield increase was observed 37.15 per cent. In spite of increase in yield of paddy, technology gap, extension gap and technology index existed. The improved technology gave higher gross return (37020 and 39180 Rs./ha), net return (16820 and 18920 Rs./ha) with higher benefit cost ratio (1.83 and 1.93) as compared to farmer's practices. The variation in per cent increase in the yield was found due to the poor management practices, lack of knowledge and poor socio economic condition. Under sustainable agricultural practices, with this study it is concluded that the FLDs programmes were effective in changing attitude, skill and knowledge of improved package and practices of HYV of paddy adoption.


2021 ◽  
Vol 9 (6) ◽  
pp. 1273
Author(s):  
Nazareth Torres ◽  
Runze Yu ◽  
S. Kaan Kurtural

Vineyard-living microbiota affect grapevine health and adaptation to changing environments and determine the biological quality of soils that strongly influence wine quality. However, their abundance and interactions may be affected by vineyard management. The present study was conducted to assess whether the vineyard soil microbiome was altered by the use of biostimulants (arbuscular mycorrhizal fungi (AMF) inoculation vs. non-inoculated) and/or irrigation management (fully irrigated vs. half irrigated). Bacterial and fungal communities in vineyard soils were shaped by both time course and soil management (i.e., the use of biostimulants and irrigation). Regarding alpha diversity, fungal communities were more responsive to treatments, whereas changes in beta diversity were mainly recorded in the bacterial communities. Edaphic factors rarely influence bacterial and fungal communities. Microbial network analyses suggested that the bacterial associations were weaker than the fungal ones under half irrigation and that the inoculation with AMF led to the increase in positive associations between vineyard-soil-living microbes. Altogether, the results highlight the need for more studies on the effect of management practices, especially the addition of AMF on cropping systems, to fully understand the factors that drive their variability, strengthen beneficial microbial networks, and achieve better soil quality, which will improve crop performance.


2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 555 ◽  
Author(s):  
Paola Sánchez-Bravo ◽  
Jacinta Collado-González ◽  
Mireia Corell ◽  
Luis Noguera-Artiaga ◽  
Alejandro Galindo ◽  
...  

Water, especially in arid and semiarid regions, is increasingly a disputed commodity among different productive sectors; the pressure for a more sustainable use of water in agriculture will grow. The main strategy to cope with water scarcity is the use of improved, innovative, and precise deficit irrigation management practices which are able to minimize the impact on fruit yield and quality. The aim of this paper was to develop a certification index or hydroSOS quality index for extra virgin olive oil and processed table olives. The hydrosSOS fruits and vegetables are those cultivated under regulated deficit irrigation (RDI). Different indicators in three quality areas ((i) fatty acids, (ii) phenolic compounds, and (iii) sensory attributes) were identified as showing characteristic or typical responses under RDI conditions. Marks or scores were assigned to each one of these indicators to calculate the proposed index. It can be concluded that an extra virgin olive oil (EVOO) or processed table olives are hydroSOStainable foods, if they meet 2 conditions: (i) fulfill the conditions established in the hydroSOS “irrigation” index, and (ii) fulfill the requirements of the hydroSOS “quality” index. HydroSOS quality index will be specific to each crop and variety and will depend on functional and sensory factors.


Sign in / Sign up

Export Citation Format

Share Document