scholarly journals In situ measurements of water vapor, heat, and CO2 fluxes within a prescribed grass fire

2006 ◽  
Vol 15 (3) ◽  
pp. 299 ◽  
Author(s):  
Craig B. Clements ◽  
Brian E. Potter ◽  
Shiyuan Zhong

Fluxes of water vapor, heat, and carbon dioxide associated with a prescribed grass fire were documented quantitatively using a 43-m instrumented flux tower within the burn perimeter and a tethered balloon sounding system immediately downwind of the fire. The measurements revealed significant increases of temperature (up to 20°C), heat flux (greater than 1000 W m–2), and CO2 (larger than 2000 parts per million by volume) within the smoke plumes, as well as an intensification of turbulent mixing. Furthermore, the observations revealed an increase in water vapor mixing ratio of more than 2 g kg–1, or nearly 30% over the ambient air, which is in good agreement with theoretical estimates of the amount of water vapor release expected as a combustion by-product from a grass fire. These observations provide direct evidence that natural fuel-load grass-fire plumes may modify the dynamic environment of the lower atmosphere through not only heat release and intense mixing, but also large addition of water vapor.

2007 ◽  
Vol 7 (11) ◽  
pp. 3776-3779
Author(s):  
Sung Park ◽  
Young Pil Kwon ◽  
Hyuck Chon Kwon ◽  
Ju-Hyeon Lee ◽  
Hae-Weon Lee ◽  
...  

Electrically regenerable porous ceramic fiber media containing nanoporous carbon from 2.5% to 19.2% have been prepared for adsorption/regeneration system. An experimental apparatus was built for in situ measurement of the sample weight during adsorption and electrothermal desorption of gaseous adsorbates. Adsorption and electrothermal desorption behavior of gaseous adsorbates on carbon contained porous ceramic fiber media was explained by physical and electrothermal properties of these materials measured in this work. In situ thermal desorption and adsorption experiments showthat a considerable amount of water vapor is adsorbed on the carbon contained media exposed to ambient air.


2015 ◽  
Vol 8 (12) ◽  
pp. 13693-13727
Author(s):  
M. Ghysels ◽  
E. D. Riviere ◽  
S. Khaykin ◽  
C. Stoeffler ◽  
N. Amarouche ◽  
...  

Abstract. In this paper we compare water vapor mixing ratio measurements from two quasi-parallel flights of the Pico-SDLA H2O and FLASH-B hygrometers. The measurements were made on 10 February 2013 and 13 March 2012, respectively, in the tropics near Bauru, Sao Paulo St., Brazil during an intense convective period. Both flights were performed as part of a French scientific project, TRO-Pico, to study the impact of the deep-convection overshoot on the water budget. Only a few instruments that permit the frequent sounding of stratospheric water vapor can be flown within a small volume weather balloons. Technical difficulties preclude the accurate measurement of stratospheric water vapor with conventional in situ techniques. The instruments described here are simple and lightweight, which permits their low-cost deployment by non-specialists aboard a small weather balloon. We obtain mixing ratio retrievals which agree above the cold-point tropopause to within 1.9 and 0.5 % for the first and second flights, respectively. This level of agreement for measured stratospheric water mixing ratio is among the best ever reported in the literature. Because both instruments show similar profiles within their combined uncertainties, we conclude that the Pico-SDLA H2O and FLASH-B datasets are mutually consistent.


2016 ◽  
Author(s):  
Darren R. Clabo

Abstract. This study presents an analysis of the water vapor mixing ratio contained within multiple mid-tropospheric smoke plumes as diagnosed by a ground-based passive microwave radiometer. Measurements from the radiometer were compared to smoke opacity as diagnosed from visible satellite imagery on three different days: 12, 16, and 20 August 2013. It was found that the water vapor mixing ratio within the smoke plume could be as much as 20–250 % higher than the mixing ratio within the ambient, non-smoke environmental air. Significant intra-smoke plume variability also existed and the mixing ratio was found to be higher (lower) in more optically thick (thin) areas of the plume. This study demonstrates that a radiometer is valuable tool that can be used to remotely measure the water vapor content within smoke plumes.


2020 ◽  
Vol 237 ◽  
pp. 06020
Author(s):  
SiQi Yu ◽  
Dong Liu ◽  
JiWei Xu ◽  
ZhenZhu Wang ◽  
DeCheng Wu ◽  
...  

Water Aerosol Raman Lidar-II is an active detection instrument with high temporal and spatial resolution at Nanjiao observation station, and that could continuous water vapor mixing ratio (WVMR) measurements. WVMR profiles inversion from lidar data and water ratio retrieved from radiosonde data are in good agreement. The statistical results of the vertical distribution of WVMR indicate that WVMR seasonal mean distribution is consistent with precipitation. In addition, WVMR in Nanjiao station is related to total cloud cover.


2010 ◽  
Vol 3 (4) ◽  
pp. 2805-2832
Author(s):  
W. W. Sluis ◽  
M. A. F. Allaart ◽  
A. J. M. Piters ◽  
L. F. L. Gast

Abstract. A growing number of space-borne instruments measures nitrogen dioxide (NO2) concentrations in the troposphere, but validation of these instruments is hampered by lack of ground-based and in-situ profile measurements. The Royal Netherlands Meteorological Institute (KNMI) has developed a working NO2 sonde. The sonde is attached to a small meteorological balloon and measures a tropospheric NO2 profile. The NO2 sonde has a vertical resolution of 5 m, and a measurement range between 1 and 100 ppbv. The instrument is light in weight (±700 g), cheap (disposable), energy efficient and not harmful to the environment or the person who finds the package after use. The sonde uses the chemiluminescent reaction of NO2 in an aqueous luminol solution. The NO2–luminol reaction produces faint blue/purple light (at about 425 nm), which is detected by an array of silicon photodiodes. The luminol solution is optimised to be specific to NO2. An on-ground comparison with measurements from a Photolytic Analyzer of RIVM shows that both instruments measure similar NO2 variations in ambient air. During the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring Instruments (CINDI) in June/July 2009 six vertical profiles of NO2 from the ground to 5 km altitude were measured, which clearly show that the largest amount of NO2 is measured in the boundary layer. The measured boundary layer heights of the NO2 sonde are in good agreement with boundary layer heights determined by a LD40 Ceilometer at Cabauw.


2007 ◽  
Vol 135 (7) ◽  
pp. 2417-2442 ◽  
Author(s):  
Conrad L. Ziegler ◽  
Michael S. Buban ◽  
Erik N. Rasmussen

Abstract A new Lagrangian analysis technique is developed to assimilate in situ boundary layer measurements using multi-Doppler-derived wind fields, providing output fields of water vapor mixing ratio, potential temperature, and virtual potential temperature from which the lifting condensation level (LCL) and relative humidity (RH) fields are derived. The Lagrangian analysis employs a continuity principle to bidirectionally distribute observed values of conservative variables with the 3D, evolving boundary layer airflow, followed by temporal and spatial interpolation to an analysis grid. Cloud is inferred at any grid point whose height z > zLCL or equivalently where RH ≥ 100%. Lagrangian analysis of the cumulus field is placed in the context of gridded analyses of visible satellite imagery and photogrammetric cloud-base area analyses. Brief illustrative examples of boundary layer morphology derived with the Lagrangian analysis are presented based on data collected during the International H2O Project (IHOP): 1) a dryline on 22 May 2002; 2) a cold-frontal–dryline “triple point” intersection on 24 May 2002. The Lagrangian analysis preserves the sharp thermal gradients across the cold front and drylines and reveals the presence of undulations and plumes of water vapor mixing ratio and virtual potential temperature associated with deep penetrative updraft cells and convective roll circulations. Derived cloud fields are consistent with satellite-inferred cloud cover and cloud-base locations.


2014 ◽  
Vol 14 (19) ◽  
pp. 10803-10822 ◽  
Author(s):  
A. Kunz ◽  
N. Spelten ◽  
P. Konopka ◽  
R. Müller ◽  
R. M. Forbes ◽  
...  

Abstract. An evaluation of water vapor in the upper troposphere and lower stratosphere (UTLS) of the ERA-Interim, the global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), is presented. Water vapor measurements are derived from the Fast In situ Stratospheric Hygrometer (FISH) during a large set of airborne measurement campaigns from 2001 to 2011 in the tropics, midlatitudes and polar regions, covering isentropic layers from 300 to 400K (5–18km). The comparison shows around 87% of the reanalysis data are within a factor of 2 of the FISH water vapor measurements and around 30% have a nearly perfect agreement with an over- and underestimation lower than 10%. Nevertheless, strong over- and underestimations can occur both in the UT and LS, in particularly in the extratropical LS and in the tropical UT, where severe over- and underestimations up to 10 times can occur. The analysis data from the evolving ECMWF operational system is also evaluated, and the FISH measurements are divided into time periods representing different cycles of the Integrated Forecast System (IFS). The agreement with FISH improves over the time, in particular when comparing water vapor fields for time periods before 2004 and after 2010. It appears that influences of tropical tropospheric and extratropical UTLS processes, e.g., convective and quasi-isentropic exchange processes, are particularly challenging for the simulation of the UTLS water vapor distribution. Both the reanalysis and operational analysis data show the tendency of an overestimation of low water vapor mixing ratio (⪅10ppmv) in the LS and underestimation of high water vapor mixing ratio (⪆300ppmv) in the UT.


2020 ◽  
Vol 237 ◽  
pp. 08007
Author(s):  
Zhenping Yin ◽  
Holger Baars ◽  
Patric Seifert ◽  
Ronny Engelmann

A new version of automatic lidar calibration and processing program was developed to process the data from multiwavelength Raman polarization lidar. The absolute lidar calibration and water vapor calibration algorithms were applied. The program can provide plentiful products, like aerosol backscatter and extinction coefficients, lidar ratio, Ångström exponent, volume and particle depolarization ratios, water vapor mixing ratio and aerosol target classification. Good agreement was found in the comparison with manual quality-assured profiles or radiosonde measurement. Lidar calibration based on the aerosol optical properties retrieved with Raman method, Klett method and AOD-Constrained method were implemented. Good consistency was found.


2011 ◽  
Vol 11 (1) ◽  
pp. 1189-1218 ◽  
Author(s):  
C. E. Jones ◽  
J. R. Hopkins ◽  
A. C. Lewis

Abstract. Biogenic volatile organic compounds (BVOCs) emitted from tropical rainforests comprise a substantial fraction of global atmospheric VOC emissions, however there are only relatively limited measurements of these species in tropical rainforest regions. We present observations of isoprene, α-pinene, camphene, Δ-3-carene, γ-terpinene and limonene, and oxygenated VOCs (OVOCs) of biogenic origin such as methacrolein, in ambient air above a~tropical rainforest in Malaysian Borneo. Daytime composition was dominated by isoprene, with an average mixing ratio of the order of ~1 ppb. γ-terpinene, limonene and camphene were the most abundant monoterpenes, with average daytime mixing ratios of 102, 71 and 66 ppt, respectively, and with an average monoterpene to isoprene ratio of 0.3 during sunlight hours, compared to 2.0 at night. Limonene and camphene abundances were seen to be related to both temperature and light conditions. In contrast, γ-terpinene emission occurred into the late afternoon/evening, under relatively low temperature and light conditions. We observe good agreement between surface and aircraft measurements of boundary layer isoprene and methacrolein above the natural rainforest, suggesting that the ground-level observations are broadly representative of isoprene emissions from this region.


2010 ◽  
Vol 3 (6) ◽  
pp. 1753-1762 ◽  
Author(s):  
W. W. Sluis ◽  
M. A. F. Allaart ◽  
A. J. M. Piters ◽  
L. F. L. Gast

Abstract. A growing number of space-borne instruments measures nitrogen dioxide (NO2) concentrations in the troposphere, but validation of these instruments is hampered by the lack of ground-based and in situ profile measurements. The Royal Netherlands Meteorological Institute (KNMI) has developed a working NO2 sonde. The sonde is attached to a small meteorological balloon and measures a tropospheric NO2 profile. The NO2 sonde has a vertical resolution of 5 m and a measurement range between 1 and 100 ppbv. The instrument is light in weight (0.7 kg), cheap (disposable), energy efficient and not harmful to the environment or the person who finds the package after use. The sonde uses the chemiluminescent reaction of NO2 in an aqueous luminol solution. The NO2-luminol reaction produces faint blue/purple light (at about 425 nm), which is detected by an array of silicon photodiodes. The luminol solution is optimised to be specific to NO2. An on-ground comparison with measurements from a Photolytic Analyser of The National Institute for Public Health and the Environment (RIVM) shows that both instruments measure similar NO2 variations in ambient air. During the Cabauw Intercomparison campaign of Nitrogen Dioxide measuring instruments (CINDI) in June/July 2009, six vertical profiles of NO2 from the ground to a 5 km altitude were measured, which clearly show that the largest amount of NO2 is measured in the boundary layer. The measured boundary layer heights of the NO2 sonde are in good agreement with boundary layer heights determined by a LD40 Ceilometer at Cabauw.


Sign in / Sign up

Export Citation Format

Share Document