Using phytolith analysis to reconstruct prehistoric fire regimes in central coastal California

2020 ◽  
Vol 29 (9) ◽  
pp. 832
Author(s):  
Kea H. Rutherford ◽  
Rand R. Evett ◽  
Peter Hopkinson

Over the last century, northern coastal scrub has encroached into open grasslands along the central California coast, increasing fire risk in coastal wildland–urban interfaces. Understanding prehistoric ecological conditions is crucial for fire mitigation projects. Current estimates of these conditions in coastal California grasslands and shrublands are largely speculative because tree ring data, lake sediment evidence and ethnographic information are sparse. Phytolith analysis is an alternative palaeoecological tool that has been successfully used to reconstruct the extent of prehistoric grass cover in California. Our study uses phytolith analysis of soil samples from the East Bay hills of the San Francisco Bay region as a novel approach to estimate prehistoric grassland distribution and infer fire frequency in central coastal California. Our data strongly indicate that many areas in the region were dominated by perennial bunchgrasses for at least several hundred years before European contact. Because grass-dominated grasslands in the East Bay hills are disturbance-dependent, our data suggest prehistoric fire frequency was of the order of 5 years or less in the region. Phytolith analysis is a useful technique for prehistoric fire regime reconstruction for grasslands and shrublands worldwide, leading to improved, data-based land management.


2005 ◽  
Vol 14 (3) ◽  
pp. 285 ◽  
Author(s):  
Jon E. Keeley

The San Francisco East Bay landscape is a rich mosaic of grasslands, shrublands and woodlands that is experiencing losses of grassland due to colonization by shrubs and succession towards woodland associations. The instability of these grasslands is apparently due to their disturbance-dependent nature coupled with 20th century changes in fire and grazing activity. This study uses fire history records to determine the potential for fire in this region and for evidence of changes in the second half of the 20th century that would account for shrubland expansion. This region has a largely anthropogenic fire regime with no lightning-ignited fires in most years. Fire suppression policy has not excluded fire from this region; however, it has been effective at maintaining roughly similar burning levels in the face of increasing anthropogenic fires, and effective at decreasing the size of fires. Fire frequency parallels increasing population growth until the latter part of the 20th century, when it reached a plateau. Fire does not appear to have been a major factor in the shrub colonization of grasslands, and cessation of grazing is a more likely immediate cause. Because grasslands are not under strong edaphic control, rather their distribution appears to be disturbance-dependent, and natural lightning ignitions are rare in the region, I hypothesize that, before the entrance of people into the region, grasslands were of limited extent. Native Americans played a major role in creation of grasslands through repeated burning and these disturbance-dependent grasslands were maintained by early European settlers through overstocking of these range lands with cattle and sheep. Twentieth century reduction in grazing, coupled with a lack of natural fires and effective suppression of anthropogenic fires, have acted in concert to favor shrubland expansion.



2014 ◽  
Vol 23 (2) ◽  
pp. 234 ◽  
Author(s):  
Ellis Q. Margolis

Piñon–juniper (PJ) fire regimes are generally characterised as infrequent high-severity. However, PJ ecosystems vary across a large geographic and bio-climatic range and little is known about one of the principal PJ functional types, PJ savannas. It is logical that (1) grass in PJ savannas could support frequent, low-severity fire and (2) exclusion of frequent fire could explain increased tree density in PJ savannas. To assess these hypotheses I used dendroecological methods to reconstruct fire history and forest structure in a PJ-dominated savanna. Evidence of high-severity fire was not observed. From 112 fire-scarred trees I reconstructed 87 fire years (1547–1899). Mean fire interval was 7.8 years for fires recorded at ≥2 sites. Tree establishment was negatively correlated with fire frequency (r=–0.74) and peak PJ establishment was synchronous with dry (unfavourable) conditions and a regime shift (decline) in fire frequency in the late 1800s. The collapse of the grass-fuelled, frequent, surface fire regime in this PJ savanna was likely the primary driver of current high tree density (mean=881treesha–1) that is >600% of the historical estimate. Variability in bio-climatic conditions likely drive variability in fire regimes across the wide range of PJ ecosystems.



2007 ◽  
Vol 363 (1501) ◽  
pp. 2351-2356 ◽  
Author(s):  
Anders Granström ◽  
Mats Niklasson

Fire, being both a natural and cultural phenomenon, presents problems in disentangling the historical effect of humans from that of climate change. Here, we investigate the potential impact of humans on boreal fire regimes from a perspective of fuels, ignitions and culture. Two ways for a low technology culture to impact the fire regime are as follows: (i) by altering the number of ignitions and their spatial distribution and timing and (ii) by hindering fire spread. Different cultures should be expected to have quite different impacts on the fire regimes. In northern Fennoscandia, there is evidence for fire regime changes associated with the following: a reindeer herding culture associated with few ignitions above the natural; an era of cattle husbandry with dramatically increased ignitions and somewhat higher fire frequency; and a timber exploitation era with decreasing fire sizes and diminishing fire frequency. In other regions of the boreal zone, such schemes can look quite different, but we suggest that a close look at the resource extraction and land use of different cultures should be part of any analysis of past fire regimes.



2020 ◽  
Vol 12 (22) ◽  
pp. 3705
Author(s):  
Ana Novo ◽  
Noelia Fariñas-Álvarez ◽  
Joaquín Martínez-Sánchez ◽  
Higinio González-Jorge ◽  
José María Fernández-Alonso ◽  
...  

The optimization of forest management in roadsides is a necessary task in terms of wildfire prevention in order to mitigate their effects. Forest fire risk assessment identifies high-risk locations, while providing a decision-making support about vegetation management for firefighting. In this study, nine relevant parameters: elevation, slope, aspect, road distance, settlement distance, fuel model types, normalized difference vegetation index (NDVI), fire weather index (FWI), and historical fire regimes, were considered as indicators of the likelihood of a forest fire occurrence. The parameters were grouped in five categories: topography, vegetation, FWI, historical fire regimes, and anthropogenic issues. This paper presents a novel approach to forest fire risk mapping the classification of vegetation in fuel model types based on the analysis of light detection and ranging (LiDAR) was incorporated. The criteria weights that lead to fire risk were computed by the analytic hierarchy process (AHP) and applied to two datasets located in NW Spain. Results show that approximately 50% of the study area A and 65% of the study area B are characterized as a 3-moderate fire risk zone. The methodology presented in this study will allow road managers to determine appropriate vegetation measures with regards to fire risk. The automation of this methodology is transferable to other regions for forest prevention planning and fire mitigation.



2003 ◽  
Vol 12 (4) ◽  
pp. 309 ◽  
Author(s):  
Robert E. Keane ◽  
Geoffrey J. Cary ◽  
Russell Parsons

Spatial depictions of fire regimes are indispensable to fire management because they portray important characteristics of wildland fire, such as severity, intensity, and pattern, across a landscape that serves as important reference for future treatment activities. However, spatially explicit fire regime maps are difficult and costly to create requiring extensive expertise in fire history sampling, multivariate statistics, remotely sensed image classification, fire behaviour and effects, fuel dynamics, landscape ecology, simulation modelling, and geographical information systems (GIS). This paper first compares three common strategies for predicting fire regimes (classification, empirical, and simulation) using a 51�000�ha landscape in the Selway-Bitterroot Wilderness Area of Montana, USA. Simulation modelling is identified as the best overall strategy with respect to developing temporally deep spatial fire patterns, but it has limitations. To illustrate these problems, we performed three simulation experiments using the LANDSUM spatial model to determine the relative importance of (1) simulation time span; (2) fire frequency parameters; and (3) fire size parameters on the simulation of landscape fire return interval. The model used to simulate fire regimes is also very important, so we compared two spatially explicit landscape fire succession models (LANDSUM and FIRESCAPE) to demonstrate differences between model predictions and limitations of each on a neutral landscape. FIRESCAPE was developed for simulating fire regimes in eucalypt forests of south-eastern Australia. Finally, challenges for future simulation and fire regime research are presented including field data, scale, fire regime variability, map obsolescence, and classification resolution.



2007 ◽  
Vol 13 (3) ◽  
pp. 177 ◽  
Author(s):  
Owen Price ◽  
Bryan Baker

A nine year fire history for the Darwin region was created from Landsat imagery, and examined to describe the fire regime across the region. 43% of the region burned each year, and approximately one quarter of the fires occur in the late dry season, which is lower than most other studied areas. Freehold land, which covers 35% of the greater Darwin region, has 20% long-unburnt land. In contrast, most publicly owned and Aboriginal owned land has very high fire frequency (60-70% per year), and only 5% long unburnt. It seems that much of the Freehold land is managed for fire suppression, while the common land is burnt either to protect the Freehold or by pyromaniacs. Generalized Linear Modelling among a random sample of points revealed that fire frequency is higher among large blocks of savannah vegetation, and at greater distances from mangrove vegetation and roads. This suggests that various kinds of fire break can be used to manage fire in the region. The overall fire frequency in the Darwin region is probably too high and is having a negative impact on wildlife. However, the relatively low proportion of late dry season fires means the regime is probably not as bad as in some other regions. The management of fire is ad-hoc and strongly influenced by tenure. There needs to be a clear statement of regional fire targets and a strategy to achieve these. Continuation of the fire mapping is an essential component of achieving the targets.



2020 ◽  
Vol 29 (7) ◽  
pp. 595 ◽  
Author(s):  
Alexandra D. Syphard ◽  
Jon E. Keeley

The fire regime is a central framing concept in wildfire science and ecology and describes how a range of wildfire characteristics vary geographically over time. Understanding and mapping fire regimes is important for guiding appropriate management and risk reduction strategies and for informing research on drivers of global change and altered fire patterns. Most efforts to spatially delineate fire regimes have been conducted by identifying natural groupings of fire parameters based on available historical fire data. This can result in classes with similar fire characteristics but wide differences in ecosystem types. We took a different approach and defined fire regime ecoregions for California to better align with ecosystem types, without using fire as part of the definition. We used an unsupervised classification algorithm to segregate the state into spatial clusters based on distinctive biophysical and anthropogenic attributes that drive fire regimes – and then used historical fire data to evaluate the ecoregions. The fire regime ecoregion map corresponded well with the major land cover types of the state and provided clear separation of historical patterns in fire frequency and size, with lower variability in fire severity. This methodology could be used for mapping fire regimes in other regions with limited historical fire data or forecasting future fire regimes based on expected changes in biophysical characteristics.



2010 ◽  
Vol 19 (1) ◽  
pp. 1 ◽  
Author(s):  
Tyson L. Swetnam ◽  
Peter M. Brown

Fire Regime Condition Class (FRCC) has been developed as a nationally consistent interagency method in the US to assess degree of departure between historical and current fire regimes and vegetation structural conditions across differing vegetation types. Historical and existing vegetation map data also are being developed for the nationwide LANDFIRE project to aid in FRCC assessments. Here, we compare selected FRCC and LANDFIRE vegetation characteristics derived from simulation modeling with similar characteristics reconstructed from tree-ring data collected from 11 forested sites in Utah. Reconstructed reference conditions based on trees present in 1880 compared with reference conditions modeled by the Vegetation Dynamics Development Tool for individual Biophysical Settings (BpS) used in FRCC and LANDFIRE assessments showed significance relationships for ponderosa pine, aspen, and mixed-conifer BpS but not for spruce–fir, piñon–juniper, or lodgepole pine BpS. LANDFIRE map data were found to be ~58% accurate for BpS and ~60% accurate for existing vegetation types. Results suggest that limited sampling of age-to-size relationships by different species may be needed to help refine reference condition definitions used in FRCC assessments, and that more empirical data are needed to better parameterize FRCC vegetation models in especially low-frequency fire types.



1982 ◽  
Vol 30 (6) ◽  
pp. 659 ◽  
Author(s):  
MJ Brown ◽  
FD Podger

The floristic differences found in vegetation ranging from sedgeland-heath to rainforest were sampled by the placement of 80 quadrats in an area 2 km2 near Bathurst Harbour, Tasmania. A direct gradient analysis using the time since last fire as the major axis of variation suggests that the changing species composition of sites is both gradational and fire-related. This interpretation is supported by a point- centred quarter analysis of the forested communities and by Principal Coordinates and Detrended Correspondence Analyses of the entire vegetation sequence. Previous descriptive models based on correlations between he frequency and structural formations are confirmed by this study. A broad correlation between fire frequency and floristic associations within non-forested vegetation is also demonstrated. However, explanation of detailed patterns requires consideration of the total fire regime (including duration and intensity of fire) and its interaction with edaphic factors. For example, fires which burn in peat lead to hysteresis in the successional pathways.



2015 ◽  
Vol 24 (5) ◽  
pp. 712 ◽  
Author(s):  
Michael J. Lawes ◽  
Brett P. Murphy ◽  
Alaric Fisher ◽  
John C. Z. Woinarski ◽  
Andrew C. Edwards ◽  
...  

Small mammal (<2 kg) numbers have declined dramatically in northern Australia in recent decades. Fire regimes, characterised by frequent, extensive, late-season wildfires, are implicated in this decline. Here, we compare the effect of fire extent, in conjunction with fire frequency, season and spatial heterogeneity (patchiness) of the burnt area, on mammal declines in Kakadu National Park over a recent decadal period. Fire extent – an index incorporating fire size and fire frequency – was the best predictor of mammal declines, and was superior to the proportion of the surrounding area burnt and fire patchiness. Point-based fire frequency, a commonly used index for characterising fire effects, was a weak predictor of declines. Small-scale burns affected small mammals least of all. Crucially, the most important aspects of fire regimes that are associated with declines are spatial ones; extensive fires (at scales larger than the home ranges of small mammals) are the most detrimental, indicating that small mammals may not easily escape the effects of large and less patchy fires. Notwithstanding considerable management effort, the current fire regime in this large conservation reserve is detrimental to the native mammal fauna, and more targeted management is required to reduce fire size.



Sign in / Sign up

Export Citation Format

Share Document