scholarly journals Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice

2006 ◽  
Vol 103 (10) ◽  
pp. 3781-3786 ◽  
Author(s):  
E. Trogan ◽  
J. E. Feig ◽  
S. Dogan ◽  
G. H. Rothblat ◽  
V. Angeli ◽  
...  
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 691-691
Author(s):  
Joerg Schuettrumpf ◽  
Jianxiang Zou ◽  
Shin Jen Tai ◽  
Alexander Schlachterman ◽  
Kian Tian ◽  
...  

Abstract Coagulation proteases are crucial for hemostasis and have also been implicated in inflammatory responses, blood vessel formation, and tumor cell metastasis. Cellular responses triggered by proteases are mediated by protease-activated receptors (PAR). Adeno-associated virus (AAV)-2 vectors hold promise for the treatment of several diseases and were already tested in Phase I studies for hemophilia B following intramuscular or hepatic artery deliveries. Previously, we determined an unexpected inhibitory effect (60–70% downregulation) on AAV-2 and adenovirus mediated gene transfer by thrombin- or FXa inhibitors. These results were independent of mouse strain, transgene product, or vector promoter, and gene expression by vectors of alternate serotypes AAV-5 or -8, which do not share cellular receptors with AAV-2, were not affected by any drug. Here we present in vivo evidence of a novel role of coagulation proteases and PARs in modulating gene transfer by viral vectors. We tested AAV-2 gene transfer efficacy in (a) animal models for proteases deficiency [FX and FIX deficient animals], (b) PAR-1 or PAR-2 deficient mice, (c) and following in vivo activation of PARs. FX knockout mice with residual activity of only 1–3% of normal (n=9) were injected with AAV-2-human(h)FIX vector and compared to littermates with FX levels of 50% (n=4). FIX expression levels were 2-fold lower among FX-deficient mice compared to controls (p<0.03). The second model, FIX deficient mice, received AAV expressing α1-antitrypsin (AAT-1). Severe hemophilia B models due to large-gene deletion (n=5) or missense mutation (R180T) in the FIX gene (n=3, <1% FIX) were compared to littermate controls with normal FIX levels (n=6). The results showed that AAT-1 levels among hemophilia B mice were 2-fold lower than in controls (24 vs 48 ng/ml, p<0.05, respectively). Because PAR activation by thrombin enhances αVβ5 (co-receptor for AAV-2 and adenovirus)-dependent cellular function (JBC 276:10952) we hypothesized that PAR modulates AAV-2 gene transfer. Homozygous (−/−) or heterozygous deficient (+/−) PAR-1 (n=24) or PAR-2 (n=25) mice received AAV-2-hF.IX and were compared to littermate controls (+/+). FIX levels among PAR-1 controls (1.9 μg/ml) were comparable to levels obtained among heterozygotes but higher than in homozygotes (1.1 μg/ml, p<0.02). Similarly, PAR-2 deficient mice presented 2-fold lower FIX levels than controls (0.7 vs 1.3 μg/ml, p<0.02) whereas heterozygous mice presented intermediate levels. To further confirm the role of PARs in AAV-2 gene transfer we activated PARs prior to AAV-2 injection. C57BL/6 mice received specific peptide agonists at doses ranging from 10 to 60 μM/kg (n=4 per dose and per peptide) and were compared to controls receiving scramble peptide. FIX levels increased 1.5 to 5-fold in a dose-dependent manner and the activation of PAR-1 and -2 simultaneously was superior to single peptide. Gene copy monitoring revealed low vector uptake by livers of PAR knockout mice while activation of PARs increased uptake. In conclusion, these data demonstrated a novel in vivo role of coagulation proteases and PARs on viral vectors (AAV-2 and adenovirus)-mediated gene expression and provide an alternative target to modulate gene therapy strategies.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1051-1051
Author(s):  
Vikas Madan ◽  
Lin Han ◽  
Norimichi Hattori ◽  
Anand Mayakonda ◽  
Qiao-Yang Sun ◽  
...  

Abstract Chromosomal translocation t(8;21) (q22;q22) leading to generation of oncogenic RUNX1-RUNX1T1 fusion is a cytogenetic abnormality observed in about 10% of acute myelogenous leukemia (AML). Studies in animal models and recent next generation sequencing approaches have suggested cooperativity of secondary genetic lesions with t(8;21) in inducing leukemogenesis. In this study, we used targeted and whole exome sequencing of 93 cases (including 30 with matched relapse samples) to profile the mutational landscape of t(8;21) AML at initial diagnosis and post-therapy relapse. We identified recurrent mutations of KIT, TET2, MGA, FLT3, NRAS, DHX15, ASXL1 and KMT2Dgenes in this subtype of AML. In addition, high frequency of truncating alterations in ASXL2 gene (19%) also occurred in our cohort. ASXL2 is a member of mammalian ASXL family involved in epigenetic regulation through recruitment of polycomb or trithorax complexes. Unlike its closely related homolog ASXL1, which is mutated in several hematological malignancies including AML, MDS, MPN and others; mutations of ASXL2 occur specifically in t(8;21) AML. We observed that lentiviral shRNA-mediated silencing of ASXL2 impaired in vitro differentiation of t(8;21) AML cell line, Kasumi-1, and enhanced its colony forming ability. Gene expression analysis uncovered dysregulated expression of several key hematopoiesis genes such as IKZF2, JAG1, TAL1 and ARID5B in ASXL2 knockdown Kasumi-1 cells. Further, to investigate implications of loss of ASXL2 in vivo, we examined hematopoiesis in Asxl2 deficient mice. We observed an age-dependent increase in white blood cell count in the peripheral blood of Asxl2 KO mice. Myeloid progenitors from Asxl2 deficient mice possessed higher re-plating ability and displayed altered differentiation potential in vitro. Flow cytometric analysis of >1 year old mice revealed increased proportion of Lin-Sca1+Kit+ (LSK) cells in the bone marrow of Asxl2 deficient mice, while the overall bone marrow cellularity was significantly reduced. In vivo 5-bromo-2'-deoxyuridine incorporation assay showed increased cycling of LSK cells in mice lacking Asxl2. Asxl2 deficiency also led to perturbed maturation of myeloid and erythroid precursors in the bone marrow, which resulted in altered proportions of mature myeloid populations in spleen and peripheral blood. Further, splenomegaly was observed in old ASXL2 KO mice and histological and flow cytometric examination of ASXL2 deficient spleens demonstrated increased extramedullary hematopoiesis and myeloproliferation compared with the wild-type controls. Surprisingly, loss of ASXL2 also led to impaired T cell development as indicated by severe block in maturation of CD4-CD8- double negative (DN) population in mice >1 year old. These findings established a critical role of Asxl2 in maintaining steady state hematopoiesis. To gain mechanistic insights into its role during hematopoietic differentiation, we investigated changes in histone marks and gene expression affected by loss of Asxl2. Whole transcriptome sequencing of LSK population revealed dysregulated expression of key myeloid-specific genes including Mpo, Ltf, Ngp Ctsg, Camp and Csf1rin cells lacking Asxl2 compared to wild-type control. Asxl2 deficiency also caused changes in histone modifications, specifically H3K27 trimethylation levels were decreased and H2AK119 ubiquitination levels were increased in Asxl2 KO bone marrow cells. Global changes in histone marks in control and Asxl2 deficient mice are being investigated using ChIP-Sequencing. Finally, to examine cooperativity between the loss of Asxl2 and RUNX1-RUNX1T1 in leukemogenesis, KO and wild-type fetal liver cells were transduced with retrovirus expressing AML1-ETO 9a oncogene and transplanted into irradiated recipient mice, the results of this ongoing study will be discussed. Overall, our sequencing studies have identified ASXL2 as a gene frequently altered in t(8;21) AML. Functional studies in mouse model reveal that loss of ASXL2 causes defects in hematopoietic differentiation and leads to myeloproliferation, suggesting an essential role of ASXL2 in normal and malignant hematopoiesis. *LH and NH contributed equally Disclosures Ogawa: Takeda Pharmaceuticals: Consultancy, Research Funding; Sumitomo Dainippon Pharma: Research Funding; Kan research institute: Consultancy, Research Funding.


Blood ◽  
2009 ◽  
Vol 113 (13) ◽  
pp. 2976-2987 ◽  
Author(s):  
Dil Afroz Sultana ◽  
Shuhei Tomita ◽  
Michito Hamada ◽  
Yasuyuki Iwanaga ◽  
Yuki Kitahama ◽  
...  

Abstract The thymus provides a microenvironment that induces the differentiation of T-progenitor cells into functional T cells and that establishes a diverse yet self-tolerant T-cell repertoire. However, the mechanisms that lead to the development of the thymus are incompletely understood. We report herein the results of screening for genes that are expressed in the third pharyngeal pouch, which contains thymic primordium. Polymerase chain reaction (PCR)–based cDNA subtraction screening for genes expressed in microdissected tissues of the third pharyngeal pouch rather than the second pharyngeal arch yielded one transcription factor, MafB, which was predominantly expressed in CD45−IA−PDGFRα+ mesenchymal cells and was detectable even in the third pharyngeal pouch of FoxN1-deficient nude mice. Interestingly, the number of CD45+ cells that initially accumulated in the embryonic thymus was significantly decreased in MafB-deficient mice. Alterations of gene expression in the embryonic thymi of MafB-deficient mice included the reduced expression of Wnt3 and BMP4 in mesenchymal cells and of CCL21 and CCL25 in epithelial cells. These results suggest that MafB expressed in third pharyngeal pouch mesenchymal cells critically regulates lymphocyte accumulation in the embryonic thymus.


2006 ◽  
Vol 74 (6) ◽  
pp. 3618-3632 ◽  
Author(s):  
Heike Weighardt ◽  
Jörg Mages ◽  
Gabriela Jusek ◽  
Simone Kaiser-Moore ◽  
Roland Lang ◽  
...  

ABSTRACT Sepsis leads to the rapid induction of proinflammatory signaling cascades by activation of the innate immune system through Toll-like receptors (TLR). To characterize the role of TLR signaling through MyD88 for sepsis-induced transcriptional activation, we investigated gene expression during polymicrobial septic peritonitis by microarray analysis. Comparison of gene expression profiles for spleens and livers from septic wild-type and MyD88-deficient mice revealed striking organ-specific differences. Whereas MyD88 deficiency strongly reduced sepsis-induced gene expression in the liver, gene expression in the spleen was largely independent of MyD88, indicating organ-specific transcriptional regulation during polymicrobial sepsis. In addition to genes regulated by MyD88 in an organ-dependent manner, we also identified genes that exhibited an organ-independent influence of MyD88 and mostly encoded cytokines and chemokines. Notably, the expression of interferon (IFN)-regulated genes was markedly increased in septic MyD88-deficient mice compared to that in septic wild-type controls. Expression of IFN-regulated genes was dependent on the adapter protein TRIF. These results suggest that the influence of MyD88 on gene expression during sepsis strongly depends on the organ compartment affected by inflammation and that the lack of MyD88 may lead to disbalance of the expression of IFN-regulated genes.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Shobha Ghosh ◽  
Jing Wang ◽  
Jinghua Bie ◽  
Quan Yuan ◽  
Olga Zolotarskaya ◽  
...  

No therapy is currently available to enhance the removal of cholesteryl esters (CE) from existing atherosclerotic plaques to facilitate plaque regression. Such a strategy is crucial to reduce the burden of existing disease in addition to preventing the progression targeted by the current therapeutics. Earlier studies from our laboratory have established the anti-atherogenic role of CE hydrolase (CEH)-mediated CE mobilization from macrophage foam cells and final elimination of cholesterol by the liver. While transgenic expression of CEH was used in pre-clinical animal studies, increase in human CEH by activation of Liver-X-receptor (LXR) was also established. Increased lipogenesis induced by LXR ligands precludes their use. The current studies focused on the development of mannose-functionalized dendrimer nanoparticles (DNPs) for the delivery of LXR ligand (TO901317) or CEH expression vector to plaque associated macrophage foam cells. As shown in the Figure, mannose functionalization restricts the uptake of DNPs to macrophages and minimal uptake was seen with primary hepatocytes ( A ). Western diet fed LDLR-/- mice were injected (iv) with DNPs and tissues harvested 48 later to monitor gene expression by QPCR. DNP-mediated delivery of LXR ligand (DNP-LXR) increased the target gene expression (ABCA1, ABCG1) in plaque associated macrophage foam cells in the aortic arch with no effects on target gene expression in the liver ( B ) demonstrating the specific delivery of LXR ligand. Comparable increase in CEH activity was seen following exposure of macrophages to free LXR ligand and DNP-delivered LXR ligand ( C ) and DNP-mediated delivery of CEH expression vectors driven either by CMV or SR-A promoter induced dramatic increase in CEH expression ( D ). These data establish functionalized DNP as a suitable platform for specific and functional delivery of drugs or DNA to plaque associated macrophages to enhance processes involved in cholesterol removal and plaque regression.


2010 ◽  
Vol 298 (5) ◽  
pp. F1152-F1161 ◽  
Author(s):  
Constanze Will ◽  
Tilman Breiderhoff ◽  
Julia Thumfart ◽  
Marchel Stuiver ◽  
Kathrin Kopplin ◽  
...  

Claudin-16 (CLDN16) is critical for renal paracellular epithelial transport of Ca2+ and Mg2+ in the thick ascending loop of Henle. To gain novel insights into the role of CLDN16 in renal Ca2+ and Mg2+ homeostasis and the pathological mechanisms underlying a human disease associated with CLDN16 dysfunction [familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), OMIM 248250], we generated a mouse model of CLDN16 deficiency. Similar to patients, CLDN16-deficient mice displayed hypercalciuria and hypomagnesemia. Contrary to FHHNC patients, nephrocalcinosis was absent in our model, indicating the existence of compensatory pathways in ion handling in this model. In line with the renal loss of Ca2+, compensatory mechanisms like parathyroid hormone and 1,25(OH)2D3 were significantly elevated. Also, gene expression profiling revealed transcriptional upregulation of several Ca2+ and Mg2+ transport systems including Trpv5, Trpm6, and calbindin-D9k. Induced gene expression was also seen for the transcripts of two putative Mg2+ transport proteins, Cnnm2 and Atp13a4. Moreover, urinary pH was significantly lower when compared with wild-type mice. Taken together, our findings demonstrate that loss of CLDN16 activity leads to specific alterations in Ca2+ and Mg2+ homeostasis and that CLDN16-deficient mice represent a useful model to further elucidate pathways involved in renal Ca2+ and Mg2+ handling.


2003 ◽  
Vol 71 (6) ◽  
pp. 3648-3651 ◽  
Author(s):  
Elodie Belnoue ◽  
Fabio T. M. Costa ◽  
Ana M. Vigário ◽  
Tatiana Voza ◽  
Françoise Gonnet ◽  
...  

ABSTRACT Infection with Plasmodium berghei ANKA induces cerebral malaria in susceptible mice. Brain-sequestered CD8+ T cells are responsible for this pathology. We have evaluated the role of CCR2, a chemokine receptor expressed on CD8+ T cells. Infected CCR2-deficient mice were as susceptible to cerebral malaria as wild-type mice were, and CD8+ T-cell migration to the brain was not abolished.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Emiel P. C. van der Vorst ◽  
Mario A. A. Pepe ◽  
Linsey J. F. Peters ◽  
Markus Haberbosch ◽  
Yvonne Jansen ◽  
...  

Abstract Background MicroRNAs (miRNAs) are short (20–24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. One of the miRNAs that has been shown to play a role in various pathologies like cancer, neurological disorders and cardiovascular diseases is miRNA-26b. However, these studies only demonstrated rather ambiguous associations without revealing a causal relationship. Therefore, the aim of this study is to establish and validate a mouse model which enables the elucidation of the exact role of miRNA-26b in various pathologies. Results A miRNA-26b-deficient mouse model was established using homologous recombination and validated using PCR. miRNA-26b-deficient mice did not show any physiological abnormalities and no effects on systemic lipid levels, blood parameters or tissue leukocytes. Using next generation sequencing, the gene expression patterns in miRNA-26b-deficient mice were analyzed and compared to wild type controls. This supported the already suggested role of miRNA-26b in cancer and neurological processes, but also revealed novel associations of miRNA-26b with thermogenesis and allergic reactions. In addition, detailed analysis identified several genes that seem to be highly regulated by miRNA-26b, which are linked to the same pathological conditions, further confirming the role of miRNA-26b in these pathologies and providing a strong validation of our mouse model. Conclusions miRNA-26b plays an important role in various pathologies, although causal relationships still have to be established. The described mouse model of miRNA-26b deficiency is a crucial first step towards the identification of the exact role of miRNA-26b in various diseases that could identify miRNA-26b as a promising novel diagnostic or even therapeutic target in a broad range of pathologies.


Biomolecules ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 59 ◽  
Author(s):  
Rajkumar Cheluvappa ◽  
Dennis Thomas ◽  
Selwyn Selvendran

The appendix contains abundant lymphoid tissue and is constantly exposed to gut flora. When completed at a young age, appendicitis followed by appendectomy (AA) prevents or significantly ameliorates Inflammatory Bowel Diseases (IBDs) in later life. Inflammatory bowel disease comprises Crohn’s disease and ulcerative colitis. Our murine AA model is the only existing experimental model of AA. In our unique model, AA performed in the most proximal colon limits colitis pathology in the most distal colon by curbing T-helper 17 cell activity, diminishing autophagy, modulating interferon activity-associated molecules, and suppressing endothelin vaso-activity-mediated immunopathology. In the research presented in this paper, we have examined the role of chemokines in colitis pathology with our murine AA model. Chemokines are a family of small cytokines with four conserved cysteine residues. Chemokines induce chemotaxis in adjacent cells with corresponding receptors. All 40 known chemokine genes and 24 chemokine receptor genes were examined for gene expression levels in distal colons three days post-AA and 28 days post-AA. At 28 days post-AA, the chemokine gene CCL5 was significantly upregulated. Furthermore, Gene Set Enrichment Analysis (GSEA) showed upregulation of seven CCL5-associated gene-sets 28 days post-AA in contrast to just one gene-set downregulated at the same time-point. The chemokine gene CXCL11 was significantly upregulated three days post-AA and 28 days post-AA. Evaluation using GSEA showed upregulation of six CXCL11-associated gene sets but no downregulation of any gene set. At 28 days post-AA, CCL17 gene expression was significantly downregulated. There was no expression of any chemokine receptor gene three days post-AA, but CCR10 was the only chemokine receptor gene that displayed differential gene expression (upregulation) 28 days post-AA. No CCR10-associated gene set was upregulated in GSEA in contrast to one downregulated gene set. Our analysis resulted in identifying three new therapeutic targets towards ameliorating colitis: CCL5, CXCL11, and CCL17. While CCL5 and CXCL11 are good therapeutic chemokine candidates to be exogenously administered, CCL17 is a good candidate chemokine to competitively inhibit or limit colitis pathology.


Sign in / Sign up

Export Citation Format

Share Document