scholarly journals The chaperone/usher pathways of Pseudomonas aeruginosa: Identification of fimbrial gene clusters (cup) and their involvement in biofilm formation

2001 ◽  
Vol 98 (12) ◽  
pp. 6911-6916 ◽  
Author(s):  
I. Vallet ◽  
J. W. Olson ◽  
S. Lory ◽  
A. Lazdunski ◽  
A. Filloux
2004 ◽  
Vol 186 (9) ◽  
pp. 2880-2890 ◽  
Author(s):  
Isabelle Vallet ◽  
Stephen P. Diggle ◽  
Rachael E. Stacey ◽  
Miguel Cámara ◽  
Isabelle Ventre ◽  
...  

ABSTRACT Pseudomonas aeruginosa is an opportunistic bacterial pathogen which poses a major threat to long-term-hospitalized patients and individuals with cystic fibrosis. The capacity of P. aeruginosa to form biofilms is an important requirement for chronic colonization of human tissues and for persistence in implanted medical devices. Various stages of biofilm formation by this organism are mediated by extracellular appendages, such as type IV pili and flagella. Recently, we identified three P. aeruginosa gene clusters that were termed cup (chaperone-usher pathway) based on their sequence relatedness to the chaperone-usher fimbrial assembly pathway in other bacteria. The cupA gene cluster, but not the cupB or cupC cluster, is required for biofilm formation on abiotic surfaces. In this study, we identified a gene (mvaT) encoding a negative regulator of cupA expression. Such regulatory control was confirmed by several approaches, including lacZ transcriptional fusions, Northern blotting, and transcriptional profiling using DNA microarrays. MvaT also represses the expression of the cupB and cupC genes, although the extent of the regulatory effect is not as pronounced as with cupA. Consistent with this finding, mvaT mutants exhibit enhanced biofilm formation. Although the P. aeruginosa genome contains a highly homologous gene, mvaU, the repression of cupA genes is MvaT specific. Thus, MvaT appears to be an important regulatory component within a complex network that controls biofilm formation and maturation in P. aeruginosa.


2020 ◽  
Vol 295 (34) ◽  
pp. 11949-11962 ◽  
Author(s):  
Lindsey S. Marmont ◽  
Gregory B. Whitfield ◽  
Roland Pfoh ◽  
Rohan J. Williams ◽  
Trevor E. Randall ◽  
...  

Pel is a GalNAc-rich bacterial polysaccharide that contributes to the structure and function of Pseudomonas aeruginosa biofilms. The pelABCDEFG operon is highly conserved among diverse bacterial species, and Pel may therefore be a widespread biofilm determinant. Previous annotation of pel gene clusters has helped us identify an additional gene, pelX, that is present adjacent to pelABCDEFG in >100 different bacterial species. The pelX gene is predicted to encode a member of the short-chain dehydrogenase/reductase (SDR) superfamily, but its potential role in Pel-dependent biofilm formation is unknown. Herein, we have used Pseudomonas protegens Pf-5 as a model to elucidate PelX function as Pseudomonas aeruginosa lacks a pelX homologue in its pel gene cluster. We found that P. protegens forms Pel-dependent biofilms; however, despite expression of pelX under these conditions, biofilm formation was unaffected in a ΔpelX strain. This observation led us to identify a pelX paralogue, PFL_5533, which we designate here PgnE, that appears to be functionally redundant to pelX. In line with this, a ΔpelX ΔpgnE double mutant was substantially impaired in its ability to form Pel-dependent biofilms. To understand the molecular basis for this observation, we determined the structure of PelX to 2.1 Å resolution. The structure revealed that PelX resembles UDP-GlcNAc C4-epimerases. Using 1H NMR analysis, we show that PelX catalyzes the epimerization between UDP-GlcNAc and UDP-GalNAc. Our results indicate that Pel-dependent biofilm formation requires a UDP-GlcNAc C4-epimerase that generates the UDP-GalNAc precursors required by the Pel synthase machinery for polymer production.


2007 ◽  
Vol 189 (9) ◽  
pp. 3547-3555 ◽  
Author(s):  
Ségolène Ruer ◽  
Silke Stender ◽  
Alain Filloux ◽  
Sophie de Bentzmann

ABSTRACT Fimbrial or nonfimbrial adhesins assembled by the bacterial chaperone-usher pathway have been demonstrated to play a key role in pathogenesis. Such an assembly mechanism has been exemplified in uropathogenic Escherichia coli strains with the Pap and the Fim systems. In Pseudomonas aeruginosa, three gene clusters (cupA, cupB, and cupC) encoding chaperone-usher pathway components have been identified in the genome sequence of the PAO1 strain. The Cup systems differ from the Pap or Fim systems, since they obviously lack numbers of genes encoding fimbrial subunits. Nevertheless, the CupA system has been demonstrated to be involved in biofilm formation on solid surfaces, whereas the role of the CupB and CupC systems in biofilm formation could not be clearly elucidated. Moreover, these gene clusters were described as poorly expressed under standard laboratory conditions. The cupB and cupC clusters are directly under the control of a two-component regulatory system designated RocA1/S1/R. In this study, we revealed that Roc1-dependent induction of the cupB and cupC genes resulted in a high level of biofilm formation, with CupB and CupC acting with synergy in clustering bacteria for microcolony formation. Very importantly, this phenotype was associated with the assembly of cell surface fimbriae visualized by electron microscopy. Finally, we observed that the CupB and CupC systems are specialized in the assembly of their own fimbrial subunits and are not exchangeable.


2020 ◽  
Author(s):  
Michael Ambutsi ◽  
Oleg Reva ◽  
Patrick Okoth

Abstract Background Pseudomonas aeruginosa is an opportunistic pathogen associated with numerous nosocomial infections that are difficult to treat as a result of natural resistance to various antibiotics, particularly because of biofilm formation. The purpose of this study was to determine the distribution of biofilm formation genes in sequences of this opportunistic pathogen and their association with different ecological niches. In total, 13 genes responsible for biofilm formation by P. aeruginosa were identified and used in the study. They were clustered into seven categories based on the role they play in the biofilm formation process. The study also analyzed 185 complete genome sequences of P. aeruginosa strains retrieved from the NCBI and IPCD databases. These were classified into 14 categories based on the ecological niches they occupy. Results Phylogenetic analyses of the biofilm formation genes indicated a strong co-evolution of a majority of these genes, n=10 . Exceptions were the genes fliC, algD, and algU which may have been exchanged by horizontal gene transfer or evolved faster than the other genes of this functional group as they are more important in terms of a proper response of the biofilm formation to specific environmental stimuli in different habitats. The BLAST Ring Image Generator (BRIG) analysis was used to visualize the distribution of biofilm formation genes between different strains of P. aeruginosa . Conclusions fliC, algD, and algU genes were identified as potential targets for antibiofilm therapies. These findings could inform the development of antibiofilm therapies that target processes mediated by these genes. Also, this study provides useful information that can guide the direction of future research.


Author(s):  
Baydaa Hussein ◽  
Zainab A. Aldhaher ◽  
Shahrazad Najem Abdu-Allah ◽  
Adel Hamdan

Background: Biofilm is a bacterial way of life prevalent in the world of microbes; in addition to that it is a source of alarm in the field of health concern. Pseudomonas aeruginosa is a pathogenic bacterium responsible for all opportunistic infections such as chronic and severe. Aim of this study: This paper aims to provide an overview of the promotion of isolates to produce a biofilm in vitro under special circumstances, to expose certain antibiotics to produce phenotypic evaluation of biofilm bacteria. Methods and Materials: Three diverse ways were used to inhibited biofilm formation of P.aeruginosa by effect of phenolic compounds extracts from strawberries. Isolates produced biofilm on agar MacConkey under certain circumstances. Results: The results showed that all isolates were resistant to antibiotics except sensitive to azithromycin (AZM, 15μg), and in this study was conducted on three ways to detect the biofilm produced, has been detected by the biofilm like Tissue culture plate (TCP), Tube method (TM), Congo Red Agar (CRA). These methods gave a clear result of these isolates under study. Active compounds were analyzed in both extracts by Gas Chromatography-mass Spectrometry which indicate High molecular weight compound with a long hydrocarbon chain. Conclusion: Phenolic compounds could behave as bioactive material and can be useful to be used in pharmaceutical synthesis. Phenolic contents which found in leaves and fruits extracts of strawberries shows antibacterial activity against all strains tested by the ability to reduce the production of biofilm formation rate.


Sign in / Sign up

Export Citation Format

Share Document