scholarly journals Nck influences preosteoblastic/osteoblastic migration and bone mass

2015 ◽  
Vol 112 (50) ◽  
pp. 15432-15437 ◽  
Author(s):  
Smriti Aryal A.C ◽  
Kentaro Miyai ◽  
Yayoi Izu ◽  
Tadayoshi Hayata ◽  
Takuya Notomi ◽  
...  

Migration of the cells in osteoblastic lineage, including preosteoblasts and osteoblasts, has been postulated to influence bone formation. However, the molecular bases that link preosteoblastic/osteoblastic cell migration and bone formation are incompletely understood. Nck (noncatalytic region of tyrosine kinase; collectively referred to Nck1 and Nck2) is a member of the signaling adaptors that regulate cell migration and cytoskeletal structures, but its function in cells in the osteoblastic lineage is not known. Therefore, we examined the role of Nck in migration of these cells. Nck is expressed in preosteoblasts/osteoblasts, and its knockdown suppresses migration as well as cell spreading and attachment to substrates. In contrast, Nck1 overexpression enhances spreading and increases migration and attachment. As for signaling, Nck double knockdown suppresses migration toward IGF1 (insulin-like growth factor 1). In these cells, Nck1 binds to IRS-1 (insulin receptor substrate 1) based on immunoprecipitation experiments using anti-Nck and anti–IRS-1 antibodies. In vivo, Nck knockdown suppresses enlargement of the pellet of DiI-labeled preosteoblasts/osteoblasts placed in the calvarial defects. Genetic experiments indicate that conditional double deletion of both Nck1 and Nck2 specifically in osteoblasts causes osteopenia. In these mice, Nck double deficiency suppresses the levels of bone-formation parameters such as bone formation rate in vivo. Interestingly, bone-resorption parameters are not affected. Finally, Nck deficiency suppresses repair of bone injury after bone marrow ablation. These results reveal that Nck regulates preosteoblastic/osteoblastic migration and bone mass.

2001 ◽  
Vol 281 (2) ◽  
pp. E283-E288 ◽  
Author(s):  
Dennis L. Andress

Insulin-like growth factor binding protein-5 (IGFBP-5) is an osteoblast secretory protein that becomes incorporated into the mineralized bone matrix. In osteoblast cultures, IGFBP-5 stimulates cell proliferation by an IGF-independent mechanism. To evaluate whether IGFBP-5 can stimulate osteoblast activity and enhance bone accretion in a mouse model of osteoblast insufficiency, daily subcutaneous injections of either intact [IGFBP-5 (intact)] or carboxy-truncated IGFBP-5 [IGFBP-5-(1–169)] were given to ovariectomized (OVX) mice for 8 wk. Femur and spine bone mineral density (BMD), measured every 2 wk, showed early and sustained increases in response to IGFBP-5. Bone histomorphometry of cancellous bone showed significant elevations in the bone formation rate in both the femur metaphysis [IGFBP-5- (1)] only) and spine compared with OVX controls. IGFBP-5 also stimulated osteoblast number in the femur IGFBP-5-(1–169) only) and spine. These data indicate that IGFBP-5 effectively enhances bone formation and bone accretion in OVX mice by stimulating osteoblast activity. The finding that IGFBP-5-(1–169) is bioactive in vivo indicates that the carboxy-terminal portion is not required for this bone anabolic effect.


2012 ◽  
Vol 97 (8) ◽  
pp. 2782-2791 ◽  
Author(s):  
Adi Cohen ◽  
David W. Dempster ◽  
Emily M. Stein ◽  
Thomas L. Nickolas ◽  
Hua Zhou ◽  
...  

Abstract Context: We have previously reported that premenopausal women with idiopathic osteoporosis based on fractures (IOP) or idiopathic low bone mineral density (ILBMD) exhibit markedly reduced bone mass, profoundly abnormal trabecular microstructure, and significant deficits in trabecular bone stiffness. Bone remodeling was heterogeneous. Those with low bone turnover had evidence of osteoblast dysfunction and the most marked deficits in microstructure and stiffness. Objective: Because osteoblasts and marrow adipocytes derive from a common mesenchymal precursor and excess marrow fat has been implicated in the pathogenesis of bone fragility in anorexia nervosa, glucocorticoid excess, and thiazolidinedione exposure, we hypothesized that marrow adiposity would be higher in affected women and inversely related to bone mass, microarchitecture, bone formation rate, and osteoblast number. Design: We analyzed tetracycline-labeled transiliac biopsy specimens in 64 premenopausal women with IOP or ILBMD and 40 controls by three-dimensional micro-computed tomography and two-dimensional quantitative histomorphometry to assess marrow adipocyte number, perimeter, and area. Results: IOP and ILBMD subjects did not differ with regard to any adipocyte parameter, and thus results were combined. Subjects had substantially higher adipocyte number (by 22%), size (by 24%), and volume (by 26%) than controls (P < 0.0001 for all). Results remained significant after adjusting for age, body mass index, and bone volume. Controls demonstrated expected direct associations between marrow adiposity and age and inverse relationships between marrow adiposity and bone formation, volume, and microstructure measures. No such relationships were observed in the subjects. Conclusions: Higher marrow adiposity and the absence of expected relationships between marrow adiposity and bone microstructure and remodeling in women with IOP or ILBMD suggest that the relationships between fat and bone are abnormal; excess marrow fat may not arise from a switch from the osteoblast to the adipocyte lineage in this disorder. Whether excess marrow fat contributes to the pathogenesis of this disorder remains unclear.


2005 ◽  
Vol 288 (4) ◽  
pp. E723-E730 ◽  
Author(s):  
Gustavo Duque ◽  
Michael Macoritto ◽  
Natalie Dion ◽  
Louis-Georges Ste-Marie ◽  
Richard Kremer

Recent studies suggest that vitamin D signaling regulates bone formation. However, the overall effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on bone turnover in vivo is still unclear. In this study, our aim was to examine the effect of 1,25(OH)2D3 on bone turnover in SAM-P/6, a hormone-independent mouse model of senile osteoporosis characterized by a decrease in bone formation. Male and female 4-mo-old SAM-P/6 mice were treated with 1,25(OH)2D3 (18 pmol/24 h) or vehicle for a period of 6 wk, and a group of age- and sex-matched nonosteoporotic animals was used as control. Bone mineral density (BMD) at the lumbar spine increased rapidly by >30 ± 5% ( P < 0.001) in 1,25(OH)2D3-treated SAM-P/6 animals, whereas BMD decreased significantly by 18 ± 2% ( P < 0.01) in vehicle-treated SAM-P/6 animals and remained stable in control animals during the same period. Static and dynamic bone histomorphometry indicated that 1,25(OH)2D3 significantly increased bone volume and other parameters of bone quality as well as subperiosteal bone formation rate compared with vehicle-treated SAM-P/6 mice. However, no effect on trabecular bone formation was observed. This was accompanied by a marked decrease in the number of osteoclasts and eroded surfaces. A significant increase in circulating bone formation markers and a decrease in bone resorption markers was also observed. Finally, bone marrow cells, obtained from 1,25(OH)2D3-treated animals and cultured in the absence of 1,25(OH)2D3, differentiated more intensely into osteoblasts compared with those derived from vehicle-treated mice cultured in the same conditions. Taken together, these findings demonstrate that 1,25(OH)2D3 acts simultaneously on bone formation and resorption to prevent the development of senile osteoporosis.


1992 ◽  
Vol 133 (2) ◽  
pp. 189-195 ◽  
Author(s):  
J. W. M. Chow ◽  
J. M. Lean ◽  
T. Abe ◽  
T. J. Chambers

ABSTRACT We have previously demonstrated that administration of oestrogen, at doses sufficient to raise serum concentrations to those seen in late pregnancy, increases trabecular bone formation in the metaphysis of adult rats. To determine whether prostaglandins (PGs), which have been shown to induce osteogenesis in vivo, play a role in the induction of bone formation by oestrogen, 13-week-old female rats were given daily doses of 4 mg 17β-oestradiol (OE2)/kg for 17 days, alone or with indomethacin (1 mg/kg). The rats were also given double fluorochrome labels and at the end of the experiment tibias were subjected to histomorphometric assessment. Treatment with OE2 suppressed longitudinal bone growth and increased uterine wet weight, as expected, and neither response was affected by indomethacin. Oestrogen also induced a threefold increase in trabecular bone formation in the proximal tibial metaphysis, which resulted in a substantial increase in trabecular bone volume. As previously observed, the increase in bone formation was predominantly due to an increase in osteoblast recruitment (as judged by an increase in the percentage of bone surface showing double fluorochrome labels), with only a minor increase in the activity of mature osteoblasts (as judged by the mineral apposition rate). Indomethacin abolished the increase in osteoblastic recruitment, but the activity of mature osteoblastic cells remained high. The bone formation rate and bone volume remained similar to controls. The results suggest that PG production may be necessary for the increased osteoblastic recruitment induced by oestrogen, but not to mediate the effects of oestrogen on the activity of mature osteoblasts. Journal of Endocrinology (1992) 133, 189–195


2020 ◽  
Author(s):  
Mallika Ghosh ◽  
Ivo Kalajzic ◽  
Hector Leonardo Aguila ◽  
Linda H Shapiro

AbstractIn vertebrates, bone formation is dynamically controlled by the activity of two specialized cell types: the bone-generating osteoblasts and bone-degrading osteoclasts. Osteoblasts produce the soluble receptor activator of NFκB ligand (RANKL) that binds to its receptor RANK on the surface of osteoclast precursor cells to promote osteoclastogenesis, a process that involves cell-cell fusion and assembly of molecular machinery to ultimately degrade the bone. CD13 is a transmembrane aminopeptidase that is highly expressed in cells of myeloid lineage has been shown to regulate dynamin-dependent receptor endocytosis and recycling and is a necessary component of actin cytoskeletal organization. In the present study, we show that CD13-deficient mice display a normal distribution of osteoclast progenitor populations in the bone marrow, but present a low bone density phenotype. Further, the endosteal bone formation rate is similar between genotypes, indicating a defect in osteoclast-specific function in vivo. Loss of CD13 led to exaggerated in vitro osteoclastogenesis as indicated by significantly enhanced fusion of bone marrow-derived multinucleated osteoclasts in the presence of M-CSF and RANKL, resulting in abnormally large cells with remarkably high numbers of nuclei with a concomitant increase in bone resorption activity. Similarly, we also observed increased formation of multinucleated giant cells (MGC) in CD13KO bone marrow progenitor cells stimulated with IL-4 and IL-13, suggesting that CD13 may regulate cell-cell fusion events via a common pathway, independent of RANKL signaling. Mechanistically, while expression levels of the fusion-regulatory proteins dynamin and DC-STAMP are normally downregulated as fusion progresses in fusion-competent mononucleated progenitor cells, in the absence of CD13 they are uniformly sustained at high levels, even in mature multi-nucleated osteoclasts. Taken together, we conclude that CD13 may regulate cell-cell fusion by controlling expression and localization of key fusion proteins that are critical for both osteoclast and MGC fusion.


2019 ◽  
Vol 5 (8) ◽  
pp. eaax2476 ◽  
Author(s):  
S. Herberg ◽  
A. M. McDermott ◽  
P. N. Dang ◽  
D. S. Alt ◽  
R. Tang ◽  
...  

Endochondral ossification during long bone development and natural fracture healing initiates by mesenchymal cell condensation, directed by local morphogen signals and mechanical cues. Here, we aimed to mimic development for regeneration of large bone defects. We hypothesized that engineered human mesenchymal condensations presenting transforming growth factor–β1 (TGF-β1) and/or bone morphogenetic protein-2 (BMP-2) from encapsulated microparticles promotes endochondral defect regeneration contingent on in vivo mechanical cues. Mesenchymal condensations induced bone formation dependent on morphogen presentation, with BMP-2 + TGF-β1 fully restoring mechanical function. Delayed in vivo ambulatory loading significantly enhanced the bone formation rate in the dual morphogen group. In vitro, BMP-2 or BMP-2 + TGF-β1 initiated robust endochondral lineage commitment. In vivo, however, extensive cartilage formation was evident predominantly in the BMP-2 + TGF-β1 group, enhanced by mechanical loading. Together, this study demonstrates a biomimetic template for recapitulating developmental morphogenic and mechanical cues in vivo for tissue engineering.


2014 ◽  
Vol 222 (2) ◽  
pp. 277-288 ◽  
Author(s):  
Corine Martineau ◽  
Louise Martin-Falstrault ◽  
Louise Brissette ◽  
Robert Moreau

A positive correlation between plasma levels of HDL and bone mass has been reported by epidemiological studies. As scavenger receptor class B, type I (SR-BI), the gene product ofScarb1, is known to regulate HDL metabolism, we recently characterized bone metabolism inScarb1-null mice. These mice display high femoral bone mass associated with enhanced bone formation. As gender differences have been reported in HDL metabolism and SR-BI function, we investigated gender-specific bone alterations inScarb1-null mice by microtomography and histology. We found 16% greater relative bone volume and 39% higher bone formation rate in the vertebrae from 2-month-oldScarb1-null females. No such alteration was seen in males, indicating gender- and region-specific differences in skeletal phenotype. Total and HDL-associated cholesterol levels, as well as ACTH plasma levels, were increased in bothScarb1-null genders, the latter being concurrent to impaired corticosterone response to fasting. Plasma levels of estradiol did not differ between null and WT females, suggesting that the estrogen metabolism alteration is not relevant to the higher vertebral bone mass in femaleScarb1-null mice. Constitutively, high plasma levels of leptin along with 2.5-fold increase in its expression in white adipose tissue were measured in femaleScarb1-null mice only.In vitroexposure of bone marrow stromal cells to ACTH and leptin promoted osteoblast differentiation as evidenced by increased gene expression ofosterixandcollagen type I alpha. Our results suggest that hyperleptinemia may account for the gender-specific high bone mass seen in the vertebrae of femaleScarb1-null mice.


1996 ◽  
Vol 270 (3) ◽  
pp. E419-E423 ◽  
Author(s):  
M. R. Forwood ◽  
I. Owan ◽  
Y. Takano ◽  
C. H. Turner

Based on our quantum concept for mechanically adaptive bone formation, we hypothesized that a single bout of loading would increase bone formation at the endosteal surface in rat tibiae, with a maximal response 4-8 days after loading and a stimulus-response relationship for load magnitude. Bending loads were applied to right tibiae of rats at 31, 43, 53, or 65 N for a single bout of 36 or 360 cycles; bone formation was assessed 1-4, 5-8, or 9-12 days after loading. A single loading episode increased lamellar bone formation rate (BFR) in all groups (P<0.05) and was maximal 5-8 days after loading. A distinct dose-response relationship was not evident among all load magnitudes or for duration, but 65 N was significantly more osteogenic than loads of 31-53 N (P<0.05), consistent with a threshold response to loading. There was also evidence for a significant increase in BFR (P<0.05) and double-labeled surface (P<0.01) within 4 days of loading, suggesting that bone-lining cells were activated directly by the stimulus. Thus subtle changes in BFR may occur by modulating the activity of surface cells, but large modeling drifts and anabolic responses require recruitment and differentiation of osteoprogenitor cells near the bone surface.


1998 ◽  
Vol 85 (1) ◽  
pp. 279-285 ◽  
Author(s):  
T. J. Wronski ◽  
M. Li ◽  
Y. Shen ◽  
S. C. Miller ◽  
B. M. Bowman ◽  
...  

As part of an experiment to study the role of corticosteroids in bone changes during spaceflight, male Sprague-Dawley rats (6 wk old, 165 g body weight) were placed in orbit for 17 days, in groups of six, in animal-enclosure modules (AEMs) aboard the space shuttle Columbia (STS-78). Control rats were group housed in a similar manner in ground-based AEMs or standard vivarium cages. Adrenal hypertrophy occurred in flight rats, but bone histomorphometric analyses revealed a lack of significant changes in bone mass and bone formation in these animals. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were nearly the same in flight and ground-based rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral necks of flight rats. In the tibial diaphysis, periosteal bone formation rate was found to be identical in flight and ground-based rats. The results indicate that, under conditions of group housing in AEMs, spaceflight has minimal effects on bone mass and bone formation in rapidly growing rats. These findings emphasize the need to investigate the importance of rat age, strain, and especially housing conditions for studies of the skeletal effects of spaceflight.


2007 ◽  
Vol 35 (01) ◽  
pp. 89-101 ◽  
Author(s):  
Wenping Zhang ◽  
Masayuki Kanehara ◽  
Yanjun Zhang ◽  
Xiaoming Wang ◽  
Torao Ishida

We investigated whether treatments with beta-blockers or other administrations that have similar actions to β-blockers, such as Chinese herbs or needling, were effective in treating osteoporosis induced by ovariectomy (OVX). Female Wister rats were divided into five groups: a sham-operated control group treated with vehicle (Sham, n = 8), an ovariectomized (OVX) group treated with vehicle (Model, n = 8), an OVX group administered with propranolol (Pro, n = 10), an OVX group administered an ethanol extract of Fructus Citri Sarcodactylis (Fcs, n = 9), and an OVX punctured at Sanyinjiao (SP-6) and Neiguan (PC-6) (Needling, n = 8). The treatment started when rats were 12 weeks old and continued for 24 weeks. Serum osteocalcin and urinary deoxypyridinoline (Dpd) levels were upregulated in rats in response to OVX, together with a significantly decreased BMD and trabecular bone area. The Pro, Fcs and Needling treatment improved the decreased BMD and the trabecular area, increased the trabecular number, lowered the trabecular separation to some extent as well as significantly depressed the urinary Dpd levels ( p < 0.05). The bone formation markers, such as the mineralizing surface, mineral apposition rate and bone formation rate were not significantly changed, along with a slightly higher trend of osteocalcin levels when compared with the Model rats. The slower heart rate and lower plasma NE levels in these therapeutic groups were also found. Our results suggested that propranolol, Fcs and needling on Sanyinjiao (SP-6) and Neiguan (PC-6) may improve the bone mass of OVX rats, and it provides an alternative and potential therapy for the prevention of postmenopausal osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document