scholarly journals Bilateral recruitment of prefrontal cortex in working memory is associated with task demand but not with age

2017 ◽  
Vol 114 (5) ◽  
pp. E830-E839 ◽  
Author(s):  
Melanie S. Höller-Wallscheid ◽  
Peter Thier ◽  
Jörn K. Pomper ◽  
Axel Lindner

Elderly adults may master challenging cognitive demands by additionally recruiting the cross-hemispheric counterparts of otherwise unilaterally engaged brain regions, a strategy that seems to be at odds with the notion of lateralized functions in cerebral cortex. We wondered whether bilateral activation might be a general coping strategy that is independent of age, task content and brain region. While using functional magnetic resonance imaging (fMRI), we pushed young and old subjects to their working memory (WM) capacity limits in verbal, spatial, and object domains. Then, we compared the fMRI signal reflecting WM maintenance between hemispheric counterparts of various task-relevant cerebral regions that are known to exhibit lateralization. Whereas language-related areas kept their lateralized activation pattern independent of age in difficult tasks, we observed bilaterality in dorsolateral and anterior prefrontal cortex across WM domains and age groups. In summary, the additional recruitment of cross-hemispheric counterparts seems to be an age-independent domain-general strategy to master cognitive challenges. This phenomenon is largely confined to prefrontal cortex, which is arguably less specialized and more flexible than other parts of the brain.

2020 ◽  
pp. 1-25
Author(s):  
S.Y. Young ◽  
J.J.M. van Hoof ◽  
M. Kidd ◽  
S. Seedat

In recent years, there has been a growing interest in neuropsychological deficits in patients with Cocaine Use Disorder (CUD) and Alcohol Use Disorder (AUD). Besides deficits in working memory (WM), impulsivity and attention, chronic alcohol and cocaine use have neurotoxic effects on frontostriatal areas in the brain. Individuals with deficits in these brain regions experience motor-timing deficits. It is unclear whether observed temporal processing deficits, in fact, reflect increased sustained attention or WM demands (which are required by timing tasks), or whether motor-timing deficits reflect some other process. The main questions of this were: (i) Can attention and WM be explained by motor-timing performance, and (ii), is impulsivity related to motor timing performance, in an inpatient SUD population? The study sample consisted of 74 abstinent patients who completed selected neuropsychological and motor-timing tasks. No significant correlation was found between performance on motor tasks and impulsivity. With regard to visual and auditory WM, motor timing was a significant predictor but only under conditions that required increased cognitive demands. Motor-timing performance contributed to a small portion of the variance in attention, but only for spatial abilities and only at increased cognitive demands. These preliminary findings suggest that, in line with the literature, millisecond timing engages other cognitive functions, but only minimally. As such motor timing should be regarded as a separate neurocognitive concomitant. Impulsivity was not associated with millisecond motor timing. More research is needed to further investigate these preliminary findings.


2020 ◽  
Vol 8 (2) ◽  
pp. 192-216
Author(s):  
S.Y. Young ◽  
J.J.M. van Hoof ◽  
M. Kidd ◽  
S. Seedat

In recent years, there has been a growing interest in neuropsychological deficits in patients with Cocaine Use Disorder (CUD) and Alcohol Use Disorder (AUD). Besides deficits in working memory (WM), impulsivity and attention, chronic alcohol and cocaine use have neurotoxic effects on frontostriatal areas in the brain. Individuals with deficits in these brain regions experience motor-timing deficits. It is unclear whether observed temporal processing deficits, in fact, reflect increased sustained attention or WM demands (which are required by timing tasks), or whether motor-timing deficits reflect some other process. The main questions of this were: (i) Can attention and WM be explained by motor-timing performance, and (ii), is impulsivity related to motor timing performance, in an inpatient SUD population? The study sample consisted of 74 abstinent patients who completed selected neuropsychological and motor-timing tasks. No significant correlation was found between performance on motor tasks and impulsivity. With regard to visual and auditory WM, motor timing was a significant predictor but only under conditions that required increased cognitive demands. Motor-timing performance contributed to a small portion of the variance in attention, but only for spatial abilities and only at increased cognitive demands. These preliminary findings suggest that, in line with the literature, millisecond timing engages other cognitive functions, but only minimally. As such motor timing should be regarded as a separate neurocognitive concomitant. Impulsivity was not associated with millisecond motor timing. More research is needed to further investigate these preliminary findings.


Author(s):  
Yael Dai ◽  
Inge-Marie Eigsti

This chapter reviews strengths and weaknesses in executive function (EF) domains, including inhibition, working memory, flexibility, fluency, and planning, in adolescents (age 13–19) with autism spectrum disorder (ASD). Given the dramatic developmental changes in the brain regions that support EF during the period of adolescence, it is critical to evaluate which EF abilities show a distinct profile during this period. As this chapter will demonstrate, youth with ASD show deficits across all domains of EF, particularly in complex tasks that include arbitrary instructions. We describe the fundamental measures for assessing skills in each domain and discuss limitations and future directions for research, as well as clinical implications of these findings for working with youth with ASD.


PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e43731 ◽  
Author(s):  
Nicola De Pisapia ◽  
Marco Sandrini ◽  
Todd S. Braver ◽  
Luigi Cattaneo

2021 ◽  
Author(s):  
Sunandha Srikanth ◽  
Dylan Le ◽  
Yudi Hu ◽  
Jill K Leutgeb ◽  
Stefan Leutgeb

Oscillatory activity is thought to coordinate neural computations across brain regions, and theta oscillations are critical for learning and memory. Because the frequency of respiratory-related oscillations (RROs) in rodents can overlap with the frequency of theta in the prefrontal cortex (PFC) and the hippocampus, we asked whether odor-cued working memory may be supported by coupling between these two oscillations. We first confirmed that RROs are propagated to the hippocampus and PFC and that RRO frequency overlaps with canonical theta frequency. However, we found low coherence between RROs and local theta oscillations in the hippocampus-PFC network when the two types of oscillations overlapped in frequency. This effect was observed during all behavioral phases including during movement and while odors were actively sampled when stationary. Despite the similarity in frequency, RROs and theta oscillations therefore appear to be limited to supporting computation in distinct networks, which suggests that sustained long-range coordination between oscillation patterns that depend on separate pacemakers is not necessary to support at least one type of working memory.


2021 ◽  
Vol 12 ◽  
Author(s):  
João Castelhano ◽  
Gisela Lima ◽  
Marta Teixeira ◽  
Carla Soares ◽  
Marta Pais ◽  
...  

There is an increasing interest in the neural effects of psychoactive drugs, in particular tryptamine psychedelics, which has been incremented by the proposal that they have potential therapeutic benefits, based on their molecular mimicry of serotonin. It is widely believed that they act mainly through 5HT2A receptors but their effects on neural activation of distinct brain systems are not fully understood. We performed a quantitative meta-analysis of brain imaging studies to investigate the effects of substances within this class (e.g., LSD, Psilocybin, DMT, Ayahuasca) in the brain from a molecular and functional point of view. We investigated the question whether the changes in activation patterns and connectivity map into regions with larger 5HT1A/5HT2A receptor binding, as expected from indolaemine hallucinogens (in spite of the often reported emphasis only on 5HT2AR). We did indeed find that regions with changed connectivity and/or activation patterns match regions with high density of 5HT2A receptors, namely visual BA19, visual fusiform regions in BA37, dorsal anterior and posterior cingulate cortex, medial prefrontal cortex, and regions involved in theory of mind such as the surpramarginal gyrus, and temporal cortex (rich in 5HT1A receptors). However, we also found relevant patterns in other brain regions such as dorsolateral prefrontal cortex. Moreover, many of the above-mentioned regions also have a significant density of both 5HT1A/5HT2A receptors, and available PET studies on the effects of psychedelics on receptor occupancy are still quite scarce, precluding a metanalytic approach. Finally, we found a robust neuromodulatory effect in the right amygdala. In sum, the available evidence points towards strong neuromodulatory effects of tryptamine psychedelics in key brain regions involved in mental imagery, theory of mind and affective regulation, pointing to potential therapeutic applications of this class of substances.


2019 ◽  
Author(s):  
Marlieke T.R. van Kesteren ◽  
Paul Rignanese ◽  
Pierre G. Gianferrara ◽  
Lydia Krabbendam ◽  
Martijn Meeter

AbstractBuilding consistent knowledge schemas that organize information and guide future learning is of great importance in everyday life. Such knowledge building is suggested to occur through reinstatement of prior knowledge during new learning in stimulus-specific brain regions. This process is proposed to yield integration of new with old memories, supported by the medial prefrontal cortex (mPFC) and medial temporal lobe (MTL). Possibly as a consequence, congruency of new information with prior knowledge is known to enhance subsequent memory. Yet, it is unknown how reactivation and congruency interact to optimize memory integration processes that lead to knowledge schemas. To investigate this question, we here used an adapted AB-AC inference paradigm in combination with functional Magnetic Resonance Imaging (fMRI). Participants first studied an AB-association followed by an AC-association, so B (a scene) and C (an object) were indirectly linked through their common association with A (an unknown pseudoword). BC-associations were either congruent or incongruent with prior knowledge (e.g. a bathduck or a hammer in a bathroom), and participants were asked to report subjective reactivation strength for B while learning AC. Behaviorally, both the congruency and reactivation measures enhanced memory integration. In the brain, these behavioral effects related to univariate and multivariate parametric effects of congruency and reactivation on activity patterns in the MTL, mPFC, and Parahippocampal Place Area (PPA). Moreover, mPFC exhibited larger connectivity with the PPA for more congruent associations. These outcomes provide insights into the neural mechanisms underlying memory integration enhancement, which can be important for educational learning.Significance statementHow does our brain build knowledge through integrating information that is learned at different periods in time? This question is important in everyday learning situations such as educational settings. Using an inference paradigm, we here set out to investigate how congruency with, and active reactivation of previously learned information affects memory integration processes in the brain. Both these factors were found to relate to activity in memory-related regions such as the medial prefrontal cortex (mPFC) and the hippocampus. Moreover, activity in the parahippocampal place area (PPA), assumed to reflect reinstatement of the previously learned associate, was found to predict subjective reactivation strength. These results show how we can moderate memory integration processes to enhance subsequent knowledge building.


2021 ◽  
Author(s):  
Paul Gomez

In this research we explore in detail how a phenomenon called sustained persistent activity is achieved by circuits of interconnected neurons. Persistent activity is a phenomenon that has been extensively studied (Papoutsi et al. 2013; Kaminski et. al. 2017; McCormick et al. 2003; Rahman, and Berger, 2011). Persistent activity consists in neuron circuits whose spiking activity remains even after the initial stimuli are removed. Persistent activity has been found in the prefrontal cortex (PFC) and has been correlated to working memory and decision making (Clayton E. Curtis and Daeyeol Lee, 2010). We go beyond the explanation of how persistent activity happens and show how arrangements of those basic circuits encode and store data and are used to perform more elaborated tasks and computations. The purpose of the model we propose here is to describe the minimum number of neurons and their interconnections required to explain persistent activity and how this phenomenon is actually a fast storage mechanism required for implementing working memory, task processing and decision making.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 124 ◽  
Author(s):  
Indranath Chatterjee ◽  
Virendra Kumar ◽  
Sahil Sharma ◽  
Divyanshi Dhingra ◽  
Bharti Rana ◽  
...  

Background: Schizophrenia, a severe psychological disorder, shows symptoms such as hallucinations and delusions. In addition, patients with schizophrenia often exhibit a deficit in working memory which adversely impacts the attentiveness and the behavioral characteristics of a person. Although several clinical efforts have already been made to study working memory deficit in schizophrenia, in this paper, we investigate the applicability of a machine learning approach for identification of the brain regions that get affected by schizophrenia leading to the dysfunction of the working memory. Methods: We propose a novel scheme for identification of the affected brain regions from functional magnetic resonance imaging data by deploying group independent component analysis in conjunction with feature extraction based on statistical measures, followed by sequential forward feature selection. The features that show highest accuracy during the classification between healthy and schizophrenia subjects are selected. Results: This study reveals several brain regions like cerebellum, inferior temporal gyrus, superior temporal gyrus, superior frontal gyrus, insula, and amygdala that have been reported in the existing literature, thus validating the proposed approach. We are also able to identify some functional changes in the brain regions, such as Heschl gyrus and the vermian area, which have not been reported in the literature involving working memory studies amongst schizophrenia patients. Conclusions: As our study confirms the results obtained in earlier studies, in addition to pointing out some brain regions not reported in earlier studies, the findings are likely to serve as a cue for clinical investigation, leading to better medical intervention.


2021 ◽  
Author(s):  
Miles Wischnewski ◽  
Kathleen E. Mantell ◽  
Alexander Opitz

AbstractAltering cortical activity using transcranial direct current stimulation (tDCS) has been shown to improve working memory (WM) performance. Due to large inter-experimental variability in the tDCS montage configuration and strength of induced electric fields, results have been mixed. Here, we present a novel meta-analytic method relating behavioral effect sizes to electric field strength to identify brain regions underlying largest tDCS-induced WM improvement. Simulations on 69 studies targeting left prefrontal cortex showed that tDCS electric field strength in lower dorsolateral prefrontal cortex (Brodmann area 45/47) relates most strongly to improved WM performance. This region explained 7.8% of variance, equaling a medium effect. A similar region was identified when correlating WM performance and electric field strength of right prefrontal tDCS studies (n = 18). Maximum electric field strength of five previously used tDCS configurations were outside of this location. We thus propose a new tDCS montage which maximizes the tDCS electric field strength in that brain region. Our findings can benefit future tDCS studies that aim to affect WM function.Highlights-We summarize the effect of 87 tDCS studies on working memory performance-We introduce a new meta-analytic method correlating tDCS electric fields and performance-tDCS-induced electric fields in lower DLPFC correlate significantly with improved working memory-The lower DLPFC was not maximally targeted by most tDCS montages and we provide an optimized montage


Sign in / Sign up

Export Citation Format

Share Document