scholarly journals Identification of shared TCR sequences from T cells in human breast cancer using emulsion RT-PCR

2016 ◽  
Vol 113 (29) ◽  
pp. 8272-8277 ◽  
Author(s):  
Daniel J. Munson ◽  
Colt A. Egelston ◽  
Kami E. Chiotti ◽  
Zuly E. Parra ◽  
Tullia C. Bruno ◽  
...  

Infiltration of T cells in breast tumors correlates with improved survival of patients with breast cancer, despite relatively few mutations in these tumors. To determine if T-cell specificity can be harnessed to augment immunotherapies of breast cancer, we sought to identify the alpha–beta paired T-cell receptors (TCRs) of tumor-infiltrating lymphocytes shared between multiple patients. Because TCRs function as heterodimeric proteins, we used an emulsion-based RT-PCR assay to link and amplify TCR pairs. Using this assay on engineered T-cell hybridomas, we observed ∼85% accurate pairing fidelity, although TCR recovery frequency varied. When we applied this technique to patient samples, we found that for any given TCR pair, the dominant alpha- or beta-binding partner comprised ∼90% of the total binding partners. Analysis of TCR sequences from primary tumors showed about fourfold more overlap in tumor-involved relative to tumor-free sentinel lymph nodes. Additionally, comparison of sequences from both tumors of a patient with bilateral breast cancer showed 10% overlap. Finally, we identified a panel of unique TCRs shared between patients’ tumors and peripheral blood that were not found in the peripheral blood of controls. These TCRs encoded a range of V, J, and complementarity determining region 3 (CDR3) sequences on the alpha-chain, and displayed restricted V-beta use. The nucleotides encoding these shared TCR CDR3s varied, suggesting immune selection of this response. Harnessing these T cells may provide practical strategies to improve the shared antigen-specific response to breast cancer.

2021 ◽  
Vol 9 (6) ◽  
pp. e002605
Author(s):  
Hannah Reimann ◽  
Andrew Nguyen ◽  
J Zachary Sanborn ◽  
Charles J Vaske ◽  
Stephen C Benz ◽  
...  

BackgroundTherapeutic regimens designed to augment the immunological response of a patient with breast cancer (BC) to tumor tissue are critically informed by tumor mutational burden and the antigenicity of expressed neoepitopes. Herein we describe a neoepitope and cognate neoepitope-reactive T-cell identification and validation program that supports the development of next-generation immunotherapies.MethodsUsing GPS Cancer, NantOmics research, and The Cancer Genome Atlas databases, we developed a novel bioinformatic-based approach which assesses mutational load, neoepitope expression, human leukocyte antigen (HLA)-binding prediction, and in vitro confirmation of T-cell recognition to preferentially identify targetable neoepitopes. This program was validated by application to a BC cell line and confirmed using tumor biopsies from two patients with BC enrolled in the Tumor-Infiltrating Lymphocytes and Genomics (TILGen) study.ResultsThe antigenicity and HLA-A2 restriction of the BC cell line predicted neoepitopes were determined by reactivity of T cells from HLA-A2-expressing healthy donors. For the TILGen subjects, tumor-infiltrating lymphocytes (TILs) recognized the predicted neoepitopes both as peptides and on retroviral expression in HLA-matched Epstein-Barr virus–lymphoblastoid cell line and BC cell line MCF-7 cells; PCR clonotyping revealed the presence of T cells in the periphery with T-cell receptors for the predicted neoepitopes. These high-avidity immune responses were polyclonal, mutation-specific and restricted to either HLA class I or II. Interestingly, we observed the persistence and expansion of polyclonal T-cell responses following neoadjuvant chemotherapy.ConclusionsWe demonstrate our neoepitope prediction program allows for the successful identification of neoepitopes targeted by TILs in patients with BC, providing a means to identify tumor-specific immunogenic targets for individualized treatment, including vaccines or adoptively transferred cellular therapies.


2020 ◽  
Vol 8 (2) ◽  
pp. e000848 ◽  
Author(s):  
Joost H van den Berg ◽  
Bianca Heemskerk ◽  
Nienke van Rooij ◽  
Raquel Gomez-Eerland ◽  
Samira Michels ◽  
...  

Treatment of metastatic melanoma with autologous tumor infiltrating lymphocytes (TILs) is currently applied in several centers. Robust and remarkably consistent overall response rates, of around 50% of treated patients, have been observed across hospitals, including a substantial fraction of durable, complete responses.PurposeExecute a phase I/II feasibility study with TIL therapy in metastatic melanoma at the Netherlands Cancer Institute, with the goal to assess feasibility and potential value of a randomized phase III trial.ExperimentalTen patients were treated with TIL therapy. Infusion products and peripheral blood samples were phenotypically characterized and neoantigen reactivity was assessed. Here, we present long-term clinical outcome and translational data on neoantigen reactivity of the T cell products.ResultsFive out of 10 patients, who were all anti-PD-1 naïve at time of treatment, showed an objective clinical response, including two patients with a complete response that are both ongoing for more than 7 years. Immune monitoring demonstrated that neoantigen-specific T cells were detectable in TIL infusion products from three out of three patients analyzed. For six out of the nine neoantigen-specific T cell responses detected in these TIL products, T cell response magnitude increased significantly in the peripheral blood compartment after therapy, and neoantigen-specific T cells were detectable for up to 3 years after TIL infusion.ConclusionThe clinical results from this study confirm the robustness of TIL therapy in metastatic melanoma and the potential role of neoantigen-specific T cell reactivity. In addition, the data from this study supported the rationale to initiate an ongoing multicenter phase III TIL trial.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A822-A822
Author(s):  
Sri Krishna ◽  
Frank Lowery ◽  
Amy Copeland ◽  
Stephanie Goff ◽  
Grégoire Altan-Bonnet ◽  
...  

BackgroundAdoptive T cell therapy (ACT) utilizing ex vivo-expanded autologous tumor infiltrating lymphocytes (TILs) can result in complete regression of human cancers.1 Successful immunotherapy is influenced by several tumor-intrinsic factors.2 3 Recently, T cell-intrinsic factors have been associated with immunotherapy response in murine and human studies.4 5 Analyses of tumor-reactive TILs have concluded that anti-tumor neoantigen-specific TILs are enriched in subsets defined by the expression of PD-1 or CD39.6 7 Thus, there is a lack of consensus regarding the tumor-reactive TIL subset that is directly responsible for successful immunotherapies such as ICB and ACT. In this study, we attempted to define the fitness landscape of TIL-enriched infusion products to specifically understand its phenotypic impact on human immunotherapy responses.MethodsWe compared the phenotypic differences that could distinguish bulk ACT infusion products (I.P.) administered to patients who had complete response to therapy (complete responders, CRs, N = 24) from those whose disease progressed following ACT (non-responders, NRs, N = 30) by high dimensional single cell protein and RNA analysis of the I.P. We further analyzed the phenotypic states of anti-tumor neoantigen specific TILs from patient I.P (N = 26) by flow cytometry and single cell transcriptomics.ResultsWe identified two CD8+ TIL populations associated with clinical outcomes: a memory-progenitor CD39-negative stem-like TIL (CD39-CD69-) in the I.P. associated with complete cancer regression (overall survival, P < 0.0001, HR = 0.217, 95% CI 0.101 to 0.463) and TIL persistence, and a terminally differentiated CD39-positive TIL (CD39+CD69+) population associated with poor TIL persistence post-treatment. Although the majority (>65%) of neoantigen-reactive TILs in both responders and non-responders to ACT were found in the differentiated CD39+ state, CR infusion products also contained a pool of CD39- stem-like neoantigen-specific TILs (median = 8.8%) that was lacking in NR infusion products (median = 23.6%, P = 1.86 x 10-5). Tumor-reactive stem-like T cells were capable of self-renewal, expansion, and persistence, and mediated superior anti-tumor response in vivo.ConclusionsOur results support the hypothesis that responders to ACT received infusion products containing a pool of stem-like neoantigen-specific TILs that are able to undergo prolific expansion, give rise to differentiated subsets, and mediate long-term tumor control and T cell persistence, in line with recent murine ICB studies mediated by TCF+ progenitor T cells.4 5 Our data also suggest that TIL subsets mediating ACT-response (stem-like CD39-) might be distinct from TIL subsets enriched for anti-tumor-reactivity (terminally differentiated CD39+) in human TIL.6 7AcknowledgementsWe thank Don White for curating the melanoma patient cohort, and J. Panopoulos (Flowjo) for helpful discussions on high-dimensional analysis, and NCI Surgery Branch members for helpful insights and suggestions. S. Krishna acknowledges funding support from NCI Director’s Innovation Award from the National Cancer Institute.Trial RegistrationNAEthics ApprovalThe study was approved by NCI’s IRB ethics board.ReferencesGoff SL, et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J Clin Oncol 2016;34:2389–2397.Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014;371:2189–2199.McGranahan N, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463–1469.Sade-Feldman M, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 2019;176:404.Miller BC, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol 2019;20:326–336.Simoni Y, et al. Bystander CD8 T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 2018;557:575–579.Gros A, et al. PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. J Clin Invest 2014;124:2246–2259.


Author(s):  
H. Kuroda ◽  
T. Jamiyan ◽  
R. Yamaguchi ◽  
A. Kakumoto ◽  
A. Abe ◽  
...  

Abstract Purpose Immune cells such as cytotoxic T cells, helper T cells, B cells or tumor-associated macrophages (TAMs) contribute to the anti-tumor response or pro-tumorigenic effect in triple negative breast cancer (TNBC). The interrelation of TAMs, T and B tumor-infiltrating lymphocytes (TILs) in TNBC has not been fully elucidated. Methods We evaluated the association of tumor-associated macrophages, T and B TILs in TNBC. Results TNBCs with a high CD68+, CD163+ TAMs and low CD4+, CD8+, CD20+ TILs had a significantly shorter relapse-free survival (RFS) and overall survival (OS) than those with low CD68+, CD163+ TAMs and high CD4+, CD8+, CD20+ TILs. TNBCs with high CD68+ TAMs/low CD8+ TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD68+ TAMs/high CD8+ TILs, low CD68+ TAMs/high CD8+ TILs, and low CD68+/low CD8+. TNBCs with high CD163+ TAMs/low CD8+, low CD20 + TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD163+ TAMs/high CD8+ TILs and high CD163+ TAMs /high CD20+ TILs. Conclusions Our study suggests that TAMs further create an optimal tumor microenvironment (TME) for growth and invasion of cancer cells when evasion of immunoreactions due to T and B TILs occurs. In TNBCs, all these events combine to affect prognosis. The process of TME is highly complex in TNBCs and for an improved understanding, larger validation studies are necessary to confirm these findings.


2019 ◽  
Vol 20 (11) ◽  
pp. 2655 ◽  
Author(s):  
Maiko Okano ◽  
Masanori Oshi ◽  
Ali Linsk Butash ◽  
Mariko Asaoka ◽  
Eriko Katsuta ◽  
...  

Estrogen receptor (ER) positive breast cancer (BC), the most abundant BC subtype, is notorious for poor response to neoadjuvant chemotherapy (NAC). The androgen receptor (AR) was reported to support estradiol-mediated ER activity in an in vitro system. Recently, ER-positive BC with fewer tumor infiltrating lymphocytes (TILs) was shown to have a better prognosis, opposite to the trend seen with ER-negative BC. We hypothesized that ER-positive BC with high expression of AR will have fewer TILs and an inferior response to NAC, but with a better prognosis. In both TCGA and METABRIC cohorts, AR expression was significantly higher in ER-positive BCs compared to ER-negatives (p < 0.001, p < 0.001, respectively) and it correlated with ER expression (R = 0.630, R = 0.509, respectively). In ER-positive tumors, AR high tumors enriched UV response down (NES = 2.01, p < 0.001), and AR low tumors enriched DNA repair (NES = −2.02, p < 0.001). AR high tumors were significantly associated with procancer regulatory T-cells, and AR low tumors were associated with anticancer immune cells, such as CD4, CD8, and Gamma-Delta T-cells and memory B-cells in ER-positive BC (p < 0.01). Further, cytolytic activity was significantly lower in AR high BC in both cohorts. Finally, AR high tumors had a significantly lower rate of attaining pathological complete response to NAC (GSE22358), but better survival. In conclusion, our results demonstrated that high AR has fewer tumor infiltrating lymphocytes as well as cytolytic activity and an inferior response to NAC, but better survival in ER-positive BC.


1993 ◽  
Vol 78 (4) ◽  
pp. 630-637 ◽  
Author(s):  
Adrian Merlo ◽  
Luis Filgueira ◽  
Markus Zuber ◽  
Antonio Juretic ◽  
Felix Harder ◽  
...  

✓ The use of tumor-infiltrating lymphocytes in the treatment of central nervous system (CNS) neoplasms has met with serious obstacles due to difficulty of culture and poor characterization. Since in other tumors the therapeutic effects of tumor-infiltrating lymphocytes have been shown to rely on T-cell receptor engagement, the authors addressed the question as to whether expression of T-cell receptor variable (V) domains in cultured tumor-infiltrating lymphocytes from CNS is different from that of autologous cultured peripheral blood mononuclear cells. Infiltrating lymphocytes from CNS neoplasms, including primary malignancies, metastatic cancers, and meningiomas, were cultured in the presence of interleukin-2 and anti-CD3 monoclonal antibodies (MoAb's) in order to obtain optimum growth of T cells. Autologous peripheral blood mononuclear cells from the same patients were similarly cultured. After 4 to 5 weeks of culture, 97.3% ± 2.6% (mean ± standard deviation) of the resulting cell populations were CD3-positive lymphocytes. The expression of T-cell receptor V domains was then studied by using a panel of 12 MoAb recognizing gene products from T-cell receptor V-α 2, V-β 5, 6, 8, and 12, V-γ 4 and 9 families, and from two subfamilies of V-δ 2. Remarkably, in over 70% of all paired measurements, percentages of T cells expressing discrete T-cell receptor V-gene products were found to be virtually identical in tumor- and peripheral blood-derived cultured cell populations, with differences never exceeding 1%. In contrast, a different expression of individual V-gene products, concerning both α/β and γ/δ T-cell receptors, could be detected between cultured tumor-infiltrating lymphocytes and autologous peripheral blood-derived T lymphocytes in seven of 12 patients. In two cases, significant differences between the two populations were also observed in the proliferative responses obtained upon stimulation with staphylococcal enterotoxins that trigger defined V-β T-cell receptors. Altogether, these data suggest that the T-cell receptor repertoire of cultured tumor-infiltrating lymphocytes from CNS tumors, suitable for use in adoptive immunotherapies, differs from that of autologous cultured peripheral blood mononuclear cells.


Sign in / Sign up

Export Citation Format

Share Document