scholarly journals Linked networks for learning and expressing location-specific threat

2018 ◽  
Vol 115 (5) ◽  
pp. E1032-E1040 ◽  
Author(s):  
Benjamin Suarez-Jimenez ◽  
James A. Bisby ◽  
Aidan J. Horner ◽  
John A. King ◽  
Daniel S. Pine ◽  
...  

Learning locations of danger within our environment is a vital adaptive ability whose neural bases are only partially understood. We examined fMRI brain activity while participants navigated a virtual environment in which flowers appeared and were “picked.” Picking flowers in the danger zone (one-half of the environment) predicted an electric shock to the wrist (or “bee sting”); flowers in the safe zone never predicted shock; and household objects served as controls for neutral spatial memory. Participants demonstrated learning with shock expectancy ratings and skin conductance increases for flowers in the danger zone. Patterns of brain activity shifted between overlapping networks during different task stages. Learning about environmental threats, during flower approach in either zone, engaged the anterior hippocampus, amygdala, and ventromedial prefrontal cortex (vmPFC), with vmPFC–hippocampal functional connectivity increasing with experience. Threat appraisal, during approach in the danger zone, engaged the insula and dorsal anterior cingulate (dACC), with insula–hippocampal functional connectivity. During imminent threat, after picking a flower, this pattern was supplemented by activity in periaqueductal gray (PAG), insula–dACC coupling, and posterior hippocampal activity that increased with experience. We interpret these patterns in terms of multiple representations of spatial context (anterior hippocampus); specific locations (posterior hippocampus); stimuli (amygdala); value (vmPFC); threat, both visceral (insula) and cognitive (dACC); and defensive behaviors (PAG), interacting in different combinations to perform the functions required at each task stage. Our findings illuminate how we learn about location-specific threats and suggest how they might break down into overgeneralization or hypervigilance in anxiety disorders.

2021 ◽  
Vol 118 (15) ◽  
pp. e2014464118
Author(s):  
Jill M. Goldstein ◽  
Justine E. Cohen ◽  
Klara Mareckova ◽  
Laura Holsen ◽  
Susan Whitfield-Gabrieli ◽  
...  

Stress is associated with numerous chronic diseases, beginning in fetal development with in utero exposures (prenatal stress) impacting offspring’s risk for disorders later in life. In previous studies, we demonstrated adverse maternal in utero immune activity on sex differences in offspring neurodevelopment at age seven and adult risk for major depression and psychoses. Here, we hypothesized that in utero exposure to maternal proinflammatory cytokines has sex-dependent effects on specific brain circuitry regulating stress and immune function in the offspring that are retained across the lifespan. Using a unique prenatal cohort, we tested this hypothesis in 80 adult offspring, equally divided by sex, followed from in utero development to midlife. Functional MRI results showed that exposure to proinflammatory cytokines in utero was significantly associated with sex differences in brain activity and connectivity during response to negative stressful stimuli 45 y later. Lower maternal TNF-α levels were significantly associated with higher hypothalamic activity in both sexes and higher functional connectivity between hypothalamus and anterior cingulate only in men. Higher prenatal levels of IL-6 were significantly associated with higher hippocampal activity in women alone. When examined in relation to the anti-inflammatory effects of IL-10, the ratio TNF-α:IL-10 was associated with sex-dependent effects on hippocampal activity and functional connectivity with the hypothalamus. Collectively, results suggested that adverse levels of maternal in utero proinflammatory cytokines and the balance of pro- to anti-inflammatory cytokines impact brain development of offspring in a sexually dimorphic manner that persists across the lifespan.


2017 ◽  
Vol 29 (2) ◽  
pp. 535-553 ◽  
Author(s):  
James E. Swain ◽  
S. Shaun Ho ◽  
Katherine L. Rosenblum ◽  
Diana Morelen ◽  
Carolyn J. Dayton ◽  
...  

AbstractParental responses to their children are crucially influenced by stress. However, brain-based mechanistic understanding of the adverse effects of parenting stress and benefits of therapeutic interventions is lacking. We studied maternal brain responses to salient child signals as a function of Mom Power (MP), an attachment-based parenting intervention established to decrease maternal distress. Twenty-nine mothers underwent two functional magnetic resonance imaging brain scans during a baby-cry task designed to solicit maternal responses to child's or self's distress signals. Between scans, mothers were pseudorandomly assigned to either MP (n = 14) or control (n = 15) with groups balanced for depression. Compared to control, MP decreased parenting stress and increased child-focused responses in social brain areas highlighted by the precuneus and its functional connectivity with subgenual anterior cingulate cortex, which are key components of reflective self-awareness and decision-making neurocircuitry. Furthermore, over 13 weeks, reduction in parenting stress was related to increasing child- versus self-focused baby-cry responses in amygdala–temporal pole functional connectivity, which may mediate maternal ability to take her child's perspective. Although replication in larger samples is needed, the results of this first parental-brain intervention study demonstrate robust stress-related brain circuits for maternal care that can be modulated by psychotherapy.


2021 ◽  
Vol 13 ◽  
Author(s):  
Juan L. Terrasa ◽  
Pedro Montoya ◽  
Carolina Sitges ◽  
Marian van der Meulen ◽  
Fernand Anton ◽  
...  

Alterations in the affective component of pain perception are related to the development of chronic pain and may contribute to the increased vulnerability to pain observed in aging. The present study analyzed age-related changes in resting-state brain activity and their possible relation to an increased pain perception in older adults. For this purpose, we compared EEG current source density and fMRI functional-connectivity at rest in older (n = 20, 66.21 ± 3.08 years) and younger adults (n = 21, 20.71 ± 2.30 years) and correlated those brain activity parameters with pain intensity and unpleasantness ratings elicited by painful stimulation. We found an age-related increase in beta2 and beta3 activity in temporal, frontal, and limbic areas, and a decrease in alpha activity in frontal areas. Moreover, older participants displayed increased functional connectivity in the anterior cingulate cortex (ACC) and the insula with precentral and postcentral gyrus. Finally, ACC beta3 activity was positively correlated with pain intensity and unpleasantness ratings in older, and ACC-precentral/postcentral gyrus connectivity was positively correlated with unpleasantness ratings in older and younger participants. These results reveal that ACC resting-state hyperactivity is a stable trait of brain aging and may underlie their characteristic altered pain perception.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiyue Duan ◽  
Zhou Fang ◽  
Li Tao ◽  
Huiyue Chen ◽  
Xiaoyu Zhang ◽  
...  

Abstract Background Depression in essential tremor (ET) has been constantly studied and reported, while the associated brain activity changes remain unclear. Recently, regional homogeneity (ReHo), a voxel-wise local functional connectivity (FC) analysis of resting-state functional magnetic resonance imaging, has provided a promising way to observe spontaneous brain activity. Methods Local FC analyses were performed in forty-one depressed ET patients, 49 non-depressed ET patients and 43 healthy controls (HCs), and then matrix FC and clinical depression severity correlation analyses were further performed to reveal spontaneous neural activity changes in depressed ET patients. Results Compared with the non-depressed ET patients, the depressed ET patients showed decreased ReHo in the bilateral cerebellum lobules IX, and increased ReHo in the bilateral anterior cingulate cortices and middle prefrontal cortices. Twenty-five significant changes of ReHo clusters were observed in the depressed ET patients compared with the HCs, and matrix FC analysis further revealed that inter-ROI FC differences were also observed in the frontal-cerebellar-anterior cingulate cortex pathway. Correlation analyses showed that clinical depression severity was positively correlated with the inter-ROI FC values between the anterior cingulate cortex and bilateral middle prefrontal cortices and was negatively correlated with the inter-ROI FC values of the anterior cingulate cortex and bilateral cerebellum lobules IX. Conclusion Our findings revealed local and inter-ROI FC differences in frontal-cerebellar-anterior cingulate cortex circuits in depressed ET patients, and among these regions, the cerebellum lobules IX, middle prefrontal cortices and anterior cingulate cortices could function as pathogenic structures underlying depression in ET patients.


2020 ◽  
Vol 48 (7) ◽  
pp. 1-19
Author(s):  
Ryan T. Daley ◽  
Holly J. Bowen ◽  
Eric C. Fields ◽  
Angela Gutchess ◽  
Elizabeth A. Kensinger

Self-relevance effects are often confounded by the presence of emotional content, rendering it difficult to determine how brain networks functionally connected to the ventromedial prefrontal cortex (vmPFC) are affected by the independent contributions of self-relevance and emotion. This difficulty is complicated by age-related changes in functional connectivity between the vmPFC and other default mode network regions, and regions typically associated with externally oriented networks. We asked groups of younger and older adults to imagine placing emotional and neutral objects in their home or a stranger's home. An age-invariant vmPFC cluster showed increased activation for self-relevant and emotional content processing. Functional connectivity analyses revealed age × self-relevance interactions in vmPFC connectivity with the anterior cingulate cortex. There were also age × emotion interactions in vmPFC functional connectivity with the anterior insula, orbitofrontal gyrus, inferior frontal gyrus, and supramarginal gyrus. Interactions occurred in regions with the greatest differences between the age groups, as revealed by conjunction analyses. Implications of the findings are discussed.


2019 ◽  
Vol 9 (7) ◽  
pp. 150 ◽  
Author(s):  
Yongzhi Huang ◽  
Binith Cheeran ◽  
Alexander L. Green ◽  
Timothy J. Denison ◽  
Tipu Z. Aziz

Deep brain stimulation (DBS) of the anterior cingulate cortex (ACC) was offered to chronic pain patients who had exhausted medical and surgical options. However, several patients developed recurrent seizures. This work was conducted to assess the effect of ACC stimulation on the brain activity and to guide safe DBS programming. A sensing-enabled neurostimulator (Activa PC + S) allowing wireless recording through the stimulating electrodes was chronically implanted in three patients. Stimulation patterns with different amplitude levels and variable ramping rates were tested to investigate whether these patterns could provide pain relief without triggering after-discharges (ADs) within local field potentials (LFPs) recorded in the ACC. In the absence of ramping, AD activity was detected following stimulation at amplitude levels below those used in chronic therapy. Adjustment of stimulus cycling patterns, by slowly ramping on/off (8-s ramp duration), was able to prevent ADs at higher amplitude levels while maintaining effective pain relief. The absence of AD activity confirmed from the implant was correlated with the absence of clinical seizures. We propose that AD activity in the ACC could be a biomarker for the likelihood of seizures in these patients, and the application of sensing-enabled techniques has the potential to advance safer brain stimulation therapies, especially in novel targets.


SLEEP ◽  
2021 ◽  
Author(s):  
Ernesto Sanz-Arigita ◽  
Yannick Daviaux ◽  
Marc Joliot ◽  
Bixente Dilharreguy ◽  
Jean-Arthur Micoulaud-Franchi ◽  
...  

Abstract Study objectives Emotional reactivity to negative stimuli has been investigated in insomnia, but little is known about emotional reactivity to positive stimuli and its neural representation. Methods We used 3T fMRI to determine neural reactivity during the presentation of standardized short, 10-40-s, humorous films in insomnia patients (n=20, 18 females, aged 27.7 +/- 8.6 years) and age-matched individuals without insomnia (n=20, 19 females, aged 26.7 +/- 7.0 years), and assessed humour ratings through a visual analogue scale (VAS). Seed-based functional connectivity was analysed for left and right amygdala networks: group-level mixed-effects analysis (FLAME; FSL) was used to compare amygdala connectivity maps between groups. Results fMRI seed-based analysis of the amygdala revealed stronger neural reactivity in insomnia patients than in controls in several brain network clusters within the reward brain network, without humour rating differences between groups (p = 0.6). For left amygdala connectivity, cluster maxima were in the left caudate (Z=3.88), left putamen (Z=3.79) and left anterior cingulate gyrus (Z=4.11), while for right amygdala connectivity, cluster maxima were in the left caudate (Z=4.05), right insula (Z=3.83) and left anterior cingulate gyrus (Z=4.29). Cluster maxima of the right amygdala network were correlated with hyperarousal scores in insomnia patients only. Conclusions Presentation of humorous films leads to increased brain activity in the neural reward network for insomnia patients compared to controls, related to hyperarousal features in insomnia patients, in the absence of humor rating group differences. These novel findings may benefit insomnia treatment interventions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Lichtman ◽  
Eyal Bergmann ◽  
Alexandra Kavushansky ◽  
Nadav Cohen ◽  
Nina S. Levy ◽  
...  

AbstractIQSEC2 is an X-linked gene that is associated with autism spectrum disorder (ASD), intellectual disability, and epilepsy. IQSEC2 is a postsynaptic density protein, localized on excitatory synapses as part of the NMDA receptor complex and is suggested to play a role in AMPA receptor trafficking and mediation of long-term depression. Here, we present brain-wide structural volumetric and functional connectivity characterization in a novel mouse model with a missense mutation in the IQ domain of IQSEC2 (A350V). Using high-resolution structural and functional MRI, we show that animals with the A350V mutation display increased whole-brain volume which was further found to be specific to the cerebral cortex and hippocampus. Moreover, using a data-driven approach we identify putative alterations in structure–function relations of the frontal, auditory, and visual networks in A350V mice. Examination of these alterations revealed an increase in functional connectivity between the anterior cingulate cortex and the dorsomedial striatum. We also show that corticostriatal functional connectivity is correlated with individual variability in social behavior only in A350V mice, as assessed using the three-chamber social preference test. Our results at the systems-level bridge the impact of previously reported changes in AMPA receptor trafficking to network-level disruption and impaired social behavior. Further, the A350V mouse model recapitulates similarly reported brain-wide changes in other ASD mouse models, with substantially different cellular-level pathologies that nonetheless result in similar brain-wide alterations, suggesting that novel therapeutic approaches in ASD that result in systems-level rescue will be relevant to IQSEC2 mutations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Tsuji ◽  
Fumiya Arikuni ◽  
Takafumi Sasaoka ◽  
Shin Suyama ◽  
Takashi Akiyoshi ◽  
...  

AbstractBrain activity associated with pain perception has been revealed by numerous PET and fMRI studies over the past few decades. These findings helped to establish the concept of the pain matrix, which is the distributed brain networks that demonstrate pain-specific cortical activities. We previously found that peripheral arterial stiffness $${\beta }_{\text{art}}$$ β art responds to pain intensity, which is estimated from electrocardiography, continuous sphygmomanometer, and photo-plethysmography. However, it remains unclear whether and to what extent $${\beta }_{\text{art}}$$ β art aligns with pain matrix brain activity. In this fMRI study, 22 participants received different intensities of pain stimuli. We identified brain regions in which the blood oxygen level-dependent signal covaried with $${\beta }_{\text{art}}$$ β art using parametric modulation analysis. Among the identified brain regions, the lateral and medial prefrontal cortex and ventral and dorsal anterior cingulate cortex were consistent with the pain matrix. We found moderate correlations between the average activities in these regions and $${\beta }_{\text{art}}$$ β art (r = 0.47, p < 0.001). $${\beta }_{\text{art}}$$ β art was also significantly correlated with self-reported pain intensity (r = 0.44, p < 0.001) and applied pain intensity (r = 0.43, p < 0.001). Our results indicate that $${\beta }_{\text{art}}$$ β art is positively correlated with pain-related brain activity and subjective pain intensity. This study may thus represent a basis for adopting peripheral arterial stiffness as an objective pain evaluation metric.


Sign in / Sign up

Export Citation Format

Share Document