scholarly journals Bifurcation-enhanced ultrahigh sensitivity of a buckled cantilever

2018 ◽  
Vol 115 (12) ◽  
pp. 2884-2889 ◽  
Author(s):  
Sangmin An ◽  
Bongsu Kim ◽  
Soyoung Kwon ◽  
Geol Moon ◽  
Manhee Lee ◽  
...  

Buckling, first introduced by Euler in 1744 [Euler L (1744) Opera Omnia I 24:231], a sudden mechanical sideways deflection of a structural member under compressive stress, represents a bifurcation in the solution to the equations of static equilibrium. Although it has been investigated in diverse research areas, such a common nonlinear phenomenon may be useful to devise a unique mechanical sensor that addresses the still-challenging features, such as the enhanced sensitivity and polarization-dependent detection capability. We demonstrate the bifurcation-enhanced sensitive measurement of mechanical vibrations using the nonlinear buckled cantilever tip in ambient conditions. The cantilever, initially buckled with its tip pinned, flips its buckling near the bifurcation point (BP), where the buckled tip becomes softened. The enhanced mechanical sensitivity results from the increasing fluctuations, unlike the typical linear sensors, which facilitate the noise-induced buckling-to-flipping transition of the softened cantilever. This allows the in situ continuous or repeated single-shot detection of the surface acoustic waves of different polarizations without any noticeable wear of the tip. We obtained the sensitivity above 106 V(m/s)−1, a 1,000-fold enhancement over the conventional seismometers. Our results lead to development of mechanical sensors of high sensitivity, reproducibility, and durability, which may be applied to detect, e.g., the directional surface waves on the laboratory as well as the geological scale.

2014 ◽  
Vol 925 ◽  
pp. 595-599
Author(s):  
Seng Teik Ten ◽  
Uda Hashim ◽  
Ahmad Sudin ◽  
Wei Wen Liu ◽  
Kai Loong Foo ◽  
...  

Surface acoustic waves based devices were initially developed for the telecommunication purpose such as signal filters and resonators. The acoustic energy is strongly confined on the surface of the surface acoustic waves (SAW) based devices and consequent their ultra-sensitivity to the surface perturbation. This has made SAW permits the highly sensitive detection of utterly diminutive charges on the surface. Hence, SAW based devices have been modified to be sensors. Food contamination has become critical issue and sensitive detection devices are needed urgently as small amount of harmful bacterial pathogens such as Escherichia coli (E.coli) O157:H7with the dose fewer than 100 organisms in food products or water is enough to cause serious gastrointestinal illness to human. Therefore, ultra-high sensitive, label free biosensors have been designed in this research for the low concentration E.coli detection. After the saturated development in telecommunication filed, SAW sensors were developed for gas detections and have been moving towards biological detections recently. Shear horizontal surface acoustic wave (SHSAW), one of the SAW based types is most suitable for the liquid based application as it has the advantage of acoustic energy is not being radiated into liquid. Therefore, SHSAW device has the potential to provide high-performance sensing platform in this research. There have been a lot of complicated theoretical models for the SAW devices development since 1960 as signal filters and resonators such as from delta function model, equivalent circuit model, to the current SAW models such as coupling-of-modes (COM) model, P-matrix model and finite element analysis (FEA) model. However, SHSAW device in this research is not meant for signal filter or resonators but used for surface sensing purpose, therefore the simplicity method of the modeling is presented in the paper for the E.coli detection sensor development.


2015 ◽  
Vol 51 (13) ◽  
pp. 2589-2592 ◽  
Author(s):  
Gaolian Xu ◽  
Rory N. Gunson ◽  
Jonathan M. Cooper ◽  
Julien Reboud

We demonstrate an acoustic platform for the multiplexed isothermal amplification of sexually transmitted diseases. The use of surface acoustic waves (SAW) enabled faster detection with high sensitivity down to 10 copies.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shintaro Takada ◽  
Hermann Edlbauer ◽  
Hugo V. Lepage ◽  
Junliang Wang ◽  
Pierre-André Mortemousque ◽  
...  

Abstract Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1685
Author(s):  
Sofia Toto ◽  
Mazin Jouda ◽  
Jan G. Korvink ◽  
Suparna Sundarayyan ◽  
Achim Voigt ◽  
...  

A prototype of a wireless vacuum microsensor combining the Pirani principle and surface acoustic waves (SAW) with extended range and sensitivity was designed, modelled, manufactured and characterised under different conditions. The main components of the prototype are a sensing SAW chip, a heating coil and an interrogation antenna. All the components were assembled on a 15 mm × 11 mm × 3 mm printed circuit board (PCB). The behaviour of the PCB was characterised under ambient conditions and in vacuum. The quality of the SAW interrogation signal, the frequency shift and the received current of the coil were measured for different configurations. Pressures between 0.9 and 100,000 Pa were detected with sensitivities between 2.8 GHz/Pa at 0.9 Pa and 1 Hz/Pa close to atmospheric pressure. This experiment allowed us to determine the optimal operating conditions of the sensor and the integration conditions inside a vacuum chamber in addition to obtaining a pressure-dependent signal.


2010 ◽  
Vol 67 ◽  
pp. 49-58 ◽  
Author(s):  
Jack K. Luo ◽  
Y.Q. Fu ◽  
Greg Ashley ◽  
Williams I. Milne

Lab-on-a-chip (LOC) is one of the most important microsystems with promising applications in microanalysis, drug development and diagnosis, etc. We have been developing a LOC biodetection system using acoustic wave as a single actuation mechanism for both microfluidics and biosensing using low cost piezoelectric ZnO film. Surface acoustic waves (SAW) coupled into the liquid will induce acoustic streaming, or move the droplet on the surface. These have been utilized to make SAW-based micropumps and micromixers which are simple in structure, easy to fabricate, low cost, reliable and efficient. SAW devices and thin film bulk acoustic resonators (FBAR) have been fabricated on nanocrystalline ZnO thin films deposited using sputtering on Si substrates. A streaming velocity up to ~5cm/s within a microdroplet and a droplet moving speed of ~1cm/s have been achieved. SAW based droplet ejection and vaporization have also been realized. SAW devices and FBARs have been used to detect antibody/antigen and rabbit/goat immunoglobulin type G molecules, showing their high sensitivity. The results have demonstrated the feasibility of using a single actuation mechanism for the LOC.


1994 ◽  
Vol 44 (3) ◽  
pp. 231-239 ◽  
Author(s):  
Franz Seifert ◽  
Wolf-Eckhart Bulst ◽  
Clemens Ruppel

2012 ◽  
Vol 34 (4) ◽  
pp. 225-236 ◽  
Author(s):  
Bui Thu Hang ◽  
Bui Duc Tung ◽  
Nguyen Tien Dat ◽  
Chu Duc Trinh

In recent years, surface acoustic wave devices used in bio-sensing applications have demonstrated high sensitivity in the detection of fluid properties such as density, viscosity, stream velocity. In this paper, a more effective measurement of the SAWsensorstructure is presented. It is reported that at density of 6 g/cm3, the amplitude of mechanical wave is excited while for electrical signal, attenuation at 3 g/cm3 reaches a peak.In our analysis, single–crystal Aluminium Nitride substrate is used. Several parameters of leaky waves including displacement, decay constant in the liquid media are analyzed.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2637 ◽  
Author(s):  
Sangmin An ◽  
Bongsu Kim ◽  
Soyoung Kwon ◽  
Geol Moon ◽  
Manhee Lee ◽  
...  

Mechanical sensors provide core keys for high-end research in quantitative understanding of fundamental phenomena and practical applications such as the force or pressure sensor, accelerometer and gyroscope. In particular, in situ sensitive and reliable detection is essential for measurements of the mechanical vibration and displacement forces in inertial sensors or seismometers. However, enhancing sensitivity, reducing response time and equipping sensors with a measurement capability of bidirectional mechanical perturbations remains challenging. Here, we demonstrate the buckling cantilever-based non-linear dynamic mechanical sensor which addresses intrinsic limitations associated with high sensitivity, reliability and durability. The cantilever is attached on to a high-Q tuning fork and initially buckled by being pressed against a solid surface while a flexural stress is applied. Then, buckling instability occurs near the bifurcation region due to lateral movement, which allows high-sensitive detection of the lateral and perpendicular surface acoustic waves with bandwidth-limited temporal response of less than 1 ms.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

Sign in / Sign up

Export Citation Format

Share Document